Zum Hauptinhalt springen
Kostenloser Versand ab 60 € *

100 Tage Geld-zurück-GarantieWir liefern schnell nach DE, AT , CH und LU

Kostenloser Versand ab 60 € *
100 Tage Geld-zurück-Garantie

SIBO-Guide – Symptome, Diagnose und Ernährung bei Dünndarmfehlbesiedlung

Vielleicht bist Du auf den Begriff “SIBO” im Rahmen einer typischen “Doktor Google”-Recherche gestoßen; vielleicht hast Du es auch von Deinem Arzt, Deiner Heilpraktikerin oder jemand anderem aus Deinem Umfeld gehört. Wie auch immer Du auf das sogenannte “Small Intestinal Bacterial Overgrowth” Syndrom – auf Deutsch: Dünndarmfehlbesiedlung – gestoßen bist, womöglich lassen sich dadurch Deine Probleme mit Deiner Verdauung erklären.

In diesem Artikel erfährst Du, was SIBO genau ist, wie es vermutlich entsteht und welche Symptome damit vergesellschaftet sind. Wir zeigen Dir ebenfalls die bisherigen Diagnose- und Behandlungsmöglichkeiten auf. Wie immer wünschen wir Dir viel Spaß beim Lesen, und falls Du Anregungen oder Fragen hast, freuen wir uns auf Deine Nachricht: support@mibiota.de 

Hinweis: Wie immer sind die Informationen in unserem Artikel von uns selbst recherchiert und geschrieben – ohne Beteiligung von ChatGPT und Konsorten. Viel Spaß beim Lesen!

Was ist SIBO genau?

SIBO (Small Intestinal Bacterial Overgrowth) ist schlicht und einfach eine bakterielle Überwucherung des Dünndarms. Im Gegensatz zu Keimen, an die man bei Bakterien vielleicht eher denkt, handelt es sich nicht um eine klassische Infektion mit Krankheitserregern, sondern vielmehr um eine Besiedlung mit eigentlich normalen Darmbakterien – also Bakterien, die in einem gesunden Verdauungstrakt üblicherweise zu finden sind.

Allerdings haben sich bei SIBO diese Bakterien am falschen Ort angesiedelt. Normalerweise leben die meisten Mikroorganismen im Dickdarm. Bei SIBO jedoch kommt es zu einer vermehrten Ansiedlung von Mikroben im Dünndarm, wo sie physiologisch (also im gesunden Zustand) nur in geringer Zahl vorhanden sein sollten. Wichtig zu verstehen ist also, dass die Bakterien, die sich angesiedelt haben, nicht generell “schlecht” oder “böse” sind, sie gehören nur in dieser Menge nicht in den Dünndarm.

Um diesen Zusammenhang besser nachzuvollziehen, lohnt sich ein Blick in die Verteilung von Mikroorganismen im Verdauungstrakt

  • Mundhöhle

    Die ersten Bakterien – auch “gute” – befinden sich schon im Mund. Denn auch unser Mund verfügt über ein eigenes Mikrobiom, und es existiert auch eine Mund-Darm-Achse.

  • Ösophagus und Magen

    Hier befinden sich wenige Bakterien, im Magen überleben nur spezielle säureresistente Stämme. Krankheitserregende Darmbakterien wie E. coli aktivieren Schutzmechanismen, um im sauren Milieu des Magens zu überleben.

  • Dünndarm & Dickdarm

    Die Menge an Mikroorganismen im Dünndarm liegt bei etwa 1.000 bis 10.000 (10³ bis 10⁴) Keimen pro Milliliter – im Gegensatz dazu leben im Dickdarm etwa 10¹¹-10¹² Bakterien pro Gramm Darminhalt (siehe Box für mehr dazu). Die Größenordnungen werden also schnell deutlich. Bei SIBO verschiebt sich dieses Verhältnis und es befinden sich mehr Bakterien im Dünndarm – die Zahl steigt auf 10⁵ bis 10⁶ pro ml oder sogar darüber hinaus. Und genau dadurch wird SIBO definiert, denn das ist das diagnostische Kriterium laut Definition der ICD-10-Klassifikation durch die Weltgesundheitsorganisation (K63.82 für die Gruppe mit Untergruppencodes).

10¹¹-10¹² Bakterien pro Gramm Darminhalt – womit kannst Du das vergleichen?

  • Stand September 2025 geht die Gesamtzahl aller Videoaufrufe auf YouTube in den 10¹²-Bereich.
  • Im menschlichen Körper befinden sich ca. 10¹¹ bis 10¹² Kilometer DNA, wenn man alle Zellen zusammenrechnet – wenn man sie entrollen würde.

Wie kommt es zur Entstehung von SIBO?

Die Entstehung ist wie bei anderen Darmerkrankungen noch nicht vollends geklärt und scheint auch multifaktoriell zu sein – das bedeutet, es gibt vermutlich mehrere Ursachen, die auch gleichzeitig vorliegen können.

Zum einen kann SIBO auf dem Boden anderer Erkrankungen oder Eingriffen entstehen – denn der Darm interagiert mit dem Rest des Körpers und wird im Umkehrschluss auch von ihm beeinflusst:

  • So zeigt sich beispielsweise ein Zusammenhang zwischen dem Auftreten von SIBO und Erkrankungen wie Leberzirrhose, Herzinsuffizienz, Diabetes, Niereninsuffizienz, Schilddrüsenunterfunktion und auch neurologischen Erkrankungen wie Parkinson1,2,3.
  • Auch mit anderen Darmerkrankungen wie der Helicobacter pylori Infektion, dem Reizdarmsyndrom oder chronisch-entzündlichen Darmerkrankungen (besonders Morbus Crohn) wird SIBO assoziiert1.

Weitere Ursachen und Mechanismen für die Entstehung von SIBO

  • verminderte Darmmotilität (medikamentenbedingt oder krankheitsbedingt sowie bei unausgewogener, ballaststoffarmer Ernährung)
  • verminderte Magensäureproduktion
  • eine beeinträchtigte Ileozäkalklappe (das ist die Verbindung und gleichzeitig Trennung zwischen Dünndarm und Dickdarm; ein niedriger Druck ist assoziiert mit SIBO4)
  • Medikamente, zum Beispiel Protonenpumpeninhibitoren (bekannt als “Magenschutz”) oder auch ein Magensäuremangel anderer Ursache
  • Alkohol und andere Drogen
  • Operationen, Strahlentherapie und Co.
  • etwas unspezifischer, aber als Einfluss nicht zu vernachlässigen: Ernährung, Stress, Umweltbelastung, und ein bisschen Genetik ist mit Sicherheit auch dabei

Wichtig zu betonen ist, dass die Beziehung zwischen SIBO und anderen Erkrankungen bidirektional ist, das heißt, SIBO kann obige und weitere Symptome und Pathologien begünstigen und andersherum. Du kannst es Dir so ähnlich vorstellen wie bei Huhn und Ei – was zuerst kam, wissen wir nicht, wenn beides einmal da ist.

Das alles kann die Funktion des Darms beeinträchtigen und dadurch die typischen SIBO-Symptome verursachen – welche das sind?

Mit welchen Symptomen wird SIBO in Verbindung gebracht?

Die Symptome einer Dünndarmfehlbesiedlung sind vielfältig und überschneiden sich häufig mit anderen Erkrankungen wie dem Reizdarmsyndrom (RDS).

Die Symptome entstehen vor allem durch die bakterielle Fermentation von Nahrungsbestandteilen im Dünndarm, was zu einer verstärkten Gasbildung, Entzündung und Störung der Nährstoffaufnahme führen kann.

Beispiele typischer SIBO-Symptome

  • Blähungen (häufig bereits kurz nach dem Essen)
  • Meteorismus (sichtbarer Blähbauch durch Gasansammlungen)
  • Bauchschmerzen und Druckgefühl, v. a. im Mittel- und Oberbauch
  • Aufstoßen und vermehrte Gasbildung
  • wechselhafter Stuhlgang, unter anderem Durchfälle (osmotisch bedingt), Verstopfung (v. a. bei methanbildenden Mikroben), Mischformen und Fettstühle (voluminös, glänzend, schwer zu spülen)
  • Übelkeit und Völlegefühl, v. a. nach fettreichen Mahlzeiten
  • Nahrungsmittelunverträglichkeiten (v. a. FODMAPs)
  • Verdauungsrückstände im Stuhl
  • chronische Müdigkeit, Konzentrationsstörungen, „Brain Fog“
  • ungewollter Gewichtsverlust

Bei FODMAPs handelt sich um Lebensmittel reich an fermentierbaren Oligo-, Di-, Monosacchariden und Polyolen – kurz gesagt, reich an leicht vergärbaren Kohlenhydraten und Zuckeralkoholen, die von manchen Menschen schlecht vertragen werden, was Symptome wie Blähungen, Bauchschmerzen und Durchfall verursachen kann. Die Low-FODMAP-Diät ist eine Ernährungsweise, die darauf abzielt, diese kurzkettigen Kohlenhydrate zu meiden und dadurch Beschwerden zu lindern.

Viele Patienten leiden auch an einer Malabsorptionsstörung, was bedeutet, dass wichtige Nährstoffe (z. B. Vitamin B12, Eisen, Fette, fettlösliche Vitamine) schlechter aufgenommen werden – das kommt besonders durch Schleimhautschäden und entzündliche Reaktionen im Dünndarm zustande.

Wusstest Du, dass viele Betroffene zunächst mit dem Verdacht auf Reizdarm diagnostiziert werden, obwohl sie eigentlich SIBO haben? Studien zeigen tatsächlich, dass bis zu knapp 50 % der Patienten mit Reizdarmsymptomatik ein potenziell zugrunde liegendes SIBO-Syndrom aufweisen5. Im Gegensatz zum Reizdarmsyndrom gibt es bei SIBO definierte Ursachen und klare Kriterien zur Diagnose – während Reizdarm mehr eine Ausschlussdiagnose darstellt.

Damit kommen wir schon zur Diagnostik – wie wird denn SIBO eigentlich nachgewiesen und worauf solltest Du achten?

Mibiota FODMAP Ratgeber

Low-FODMAP Ratgeber bei Reizdarm und SIBO

Praktisch für’s Smartphone – ideal für Deinen nächsten Einkauf!

Jetzt herunterladen!

Der Weg zur SIBO-Diagnose – Atemtests, Verdauungsflüssigkeit und mehr

Der Goldstandard zum Nachweis von SIBO ist die Messung des Bakteriengehalts in der Dünndarmflüssigkeit. Das Aspirat muss über eine Endoskopie gewonnen werden und ist damit ein invasiver Eingriff. Unterstützend werden häufig Atemtests genutzt, die nach dem Verzehr einer Zuckerlösung (meist Laktulose oder Glukose) den Gehalt von bestimmten Gasen in der Atemluft messen. Diese Tests weisen zwar eine etwas geringere Sensitivität und Spezifität (siehe Box) auf, sind jedoch deutlich leichter durchzuführen.

Zufolge neuester Ergebnisse soll zusätzlich auch das Calprotectin im Stuhl, ein Wert, der primär zur Diagnose chronisch-entzündlicher Darmerkrankungen genutzt wird, auf SIBO hinweisen können6. Diese Erkenntnis zeigte sich bisher jedoch vor allem in Zusammenhang mit dem Krankheitsbild der systemischen Sklerose.

Sensitivität und Spezifität von Atemtests

  • Sensitivität: Sie misst den Anteil der tatsächlichen Positiven, die korrekt als solche erkannt werden (hier: der Anteil der SIBO-Erkrankten, die durch den Atemtest korrekt als solche erkannt werden).
  • Spezifität: Sie misst den Anteil der tatsächlichen Negativen, die korrekt als solche identifiziert werden (hier: der Anteil der nicht an SIBO-Erkrankten, die korrekt als nicht krank erkannt werden).

Die Diagnosekriterien der WHO richten sich nach dem Goldstandard: In der Dünndarmflüssigkeit muss die Konzentration an Darmbakterien mindestens 105 Zellen/ml betragen. Weiterhin wird in verschiedene Untergruppen von SIBO unterteilt.

Bestimmung der SIBO-Typen

Je nach Bakteriengattung, die den Dünndarm überwuchert, werden bei SIBO unterschiedliche Gase vermehrt produziert, die dann in einem Atemtest bestimmt werden können. In Abhängigkeit vom dominierenden Gas unterscheiden sich bei SIBO auch die Symptome. Folgende SIBO-Typen werden auf Basis der Ergebnisse eines Atemtests unterschieden:

  • Methandominante SIBO / IMO

    Hier wird das Methan in den meisten Fällen nicht von Bakterien, sondern Archaeen produziert. Zudem ist in der Regel nicht allein der Dünndarm, sondern auch der Dickdarm befallen. Deswegen sprechen wir auch von IMO (Intestinal Methan Overgrowth). IMO wird häufig mit Verstopfung in Verbindung gebracht. 

  • Wasserstoffdominante SIBO

    Bei diesem Typ von SIBO verursacht der von den überwuchenden Bakterien produzierte Wasserstoff die Symptome aus. Diese SIBO-Form wird häufig von Durchfall begleitet.

  • Schwefelwasserstoff-SIBO

    Dieser SIBO-Typ, auch H2S-Typ genannt, nimmt eine Sonderrolle ein, da sie dann angenommen wird, wenn im gesamten Atemtest keine erhöhte Konzentration eines Gases feststellbar ist. Hier kann eine Mikrobiomanalyse als weitere Testmethode mehr Klarheit verschaffen.

Bei der Diagnostik wendest Du Dich am besten an den Arzt oder die Ärztin Deines Vertrauens. Zusammen könnt Ihr am besten die Wahl der Methode die Art des Atemtests bestimmen. Was Du aber dann tun kannst und wie eine Therapie aussehen könnte, das besprechen wir jetzt.

Was hilft bei SIBO wirklich?

Die Behandlung von SIBO erfordert ein schrittweises Vorgehen, das auf mehreren Ebenen ansetzt – von der Ernährungsumstellung bis hin zur gezielten Therapie. Wichtig ist, dass Du auf Deine Symptome und Deinen Körper achtest, denn die Evidenz zur Behandlung von SIBO zeigt oft uneinheitliche Ergebnisse, eventuell wegen Unterschiede der Erkrankten.

Am Anfang steht die Symptomkontrolle. Die könnte zum Beispiel so aussehen:

  • 1. Langsames, achtsames Essen mit vielen Pausen zwischen den Mahlzeiten

    Wenn Du gut kaust und in Ruhe isst, aktivierst Du den sogenannten Parasympathikus – den Teil des Nervensystems, der bei der Verdauung aktiviert ist – und regelmäßige Pausen zwischen den Mahlzeiten (z. B. 4–5 Stunden) können helfen, die natürliche Darmbewegung zu fördern.

  • 2. Kein Stress!

    Auch wenn dies leichter gesagt als getan ist: Stressreduktion kann helfen, die Ausschüttung von Verdauungsenzymen zu fördern.

  • 3. Nahrungsergänzungen

    Enzymsupplementierung kann Dir dabei helfen, die Nährstoffaufnahme zu verbessern und Gärungsprozesse, bei denen Gase entstehen, zu vermindern.

  • 4. Reduzierung von FODMAPs

    Bestimmte Kohlenhydrate (FODMAPs) werden von den Bakterien im Dünndarm besonders leicht vergoren – die vorübergehende Reduktion kann helfen, die Symptome zu mindern.

Allein das ist langfristig oft nicht nachhaltig – denn die Ursache, die Fehlbesiedlung, bleibt noch bestehen. Im nächsten Schritt geht es also um eine Beseitigung der Bakterien, die “zu viel” sind.

Reduktion der Bakterien bei SIBO / Dünndarmfehlbesiedlung

Hierbei gibt es mehrere Ansätze, von Antibiotikagabe bis zu pflanzlichen Wirkstoffen, die das Bakterienwachstum hemmen können. Die natürliche Unterstützung bei SIBO findet beispielsweise mittels Pflanzenstoffe wie Knoblauchextrakte mit hohem Allicingehalt, Oreganoöl, Berberin, Zimt oder Schwarzkümmel statt. Die Evidenz hierzu steht aktuell zu großen Teilen noch aus, erste Ergebnisse sind jedoch erfreulicherweise positiv7,8. Es gibt jedoch Hinweise darauf, dass eine Kombination aus Antibiotikum (Rifaximin) und partiell-hydrolysiertem Guarkernmehl (PHGG), besser zu wirken scheint als eine alleinige Antibiotikagabe9.

Neben der Keimeradikation zur Reduktion der Bakterien im Dünndarm ist auch eine Unterstützung der Darmschleimhaut sowie der Verdauung wichtig. Während der Eradikation werden gleichzeitig die meisten “guten” Bakterien angegriffen, welche wichtige Stoffe zum Erhalt der Darmbarriere und der allgemeinen Gesundheit produzieren – es ist daher wichtig, den Darm und die Verdauung beispielsweise über sanftere Ballaststoffe zu unterstützen. Dazu zählen beispielsweise PHGG, Akazienfasern oder auch resistente Stärke. Weiterhin können einige Pflanzenextrakte reich an Polyphenolen10,11, oder auch L-Glutamin12 potenziell die Darmbarriere stärken, wobei letztere Empfehlung besonders auf Erfahrung basiert.

Besonders wichtig nach all dem ist es jedoch, Deinen Lebensstil auch nach der Beseitigung der Symptome gesund, reich an Ballaststoffen sowie möglichst stressarm zu gestalten, um Deinen Darm langfristig im Gleichgewicht zu halten.

Fazit: SIBO als komplexes Krankheitsbild mit viel Therapiepotenzial

SIBO ist komplex – und genau deshalb braucht es eine strukturierte, ganzheitliche Herangehensweise. Nicht jede Maßnahme ist für alle gleich sinnvoll, aber wenn Du Schritt für Schritt vorgehst, stehen die Chancen gut, dass Du langfristig wieder zu einem stabilen Verdauungssystem zurückfindest. Denn trotz teilweise unvollständiger Evidenz zeigen sich mehrere vielversprechende Möglichkeiten zur Besserung der Symptome bis hin zur Remission, die ebenfalls in einigen Studien erreicht werden konnte.


Referenzen (Englisch):

  1. Sroka, N., Rydzewska-Rosołowska, A., Kakareko, K., Rosołowski, M., Głowińska, I., & Hryszko, T. (2022). Show Me What You Have Inside-The Complex Interplay between SIBO and Multiple Medical Conditions-A Systematic Review. Nutrients, 15(1), 90. https://doi.org/10.3390/nu15010090
  2. Gunnarsdottir, S. A., Sadik, R., Shev, S., Simrén, M., Sjövall, H., Stotzer, P. O., Abrahamsson, H., Olsson, R., & Björnsson, E. S. (2003). Small intestinal motility disturbances and bacterial overgrowth in patients with liver cirrhosis and portal hypertension. The American journal of gastroenterology, 98(6), 1362–1370. https://doi.org/10.1111/j.1572-0241.2003.07475.x
  3. Song, Y., Liu, Y., Qi, B., Cui, X., Dong, X., Wang, Y., Han, X., Li, F., Shen, D., Zhang, X., Hu, K., Chen, S., Zhou, J., & Ge, J. (2021). Association of Small Intestinal Bacterial Overgrowth With Heart Failure and Its Prediction for Short-Term Outcomes. Journal of the American Heart Association, 10(7), e015292. https://doi.org/10.1161/JAHA.119.015292
  4. Roland, B. C., Ciarleglio, M. M., Clarke, J. O., Semler, J. R., Tomakin, E., Mullin, G. E., & Pasricha, P. J. (2014). Low ileocecal valve pressure is significantly associated with small intestinal bacterial overgrowth (SIBO). Digestive diseases and sciences, 59(6), 1269–1277. https://doi.org/10.1007/s10620-014-3166-7
  5. Poon, D., Law, G. R., Major, G., & Andreyev, H. J. N. (2022). A systematic review and meta-analysis on the prevalence of non-malignant, organic gastrointestinal disorders misdiagnosed as irritable bowel syndrome. Scientific reports, 12(1), 1949. https://doi.org/10.1038/s41598-022-05933-1
  6. Marie, I., Leroi, A. M., Menard, J. F., Levesque, H., Quillard, M., & Ducrotte, P. (2015). Fecal calprotectin in systemic sclerosis and review of the literature. Autoimmunity reviews, 14(6), 547–554. https://doi.org/10.1016/j.autrev.2015.01.018
  7. Redondo-Cuevas, L., Belloch, L., Martín-Carbonell, V., Nicolás, A., Alexandra, I., Sanchis, L., Ynfante, M., Colmenares, M., Mora, M., Liebana, A. R., Antequera, B., Grau, F., Molés, J. R., Cuesta, R., Díaz, S., Sancho, N., Tomás, H., Gonzalvo, J., Jaén, M., Sánchez, E., … Cortés-Rizo, X. (2024). Do Herbal Supplements and Probiotics Complement Antibiotics and Diet in the Management of SIBO? A Randomized Clinical Trial. Nutrients, 16(7), 1083. https://doi.org/10.3390/nu16071083
  8. Chedid, V., Dhalla, S., Clarke, J. O., Roland, B. C., Dunbar, K. B., Koh, J., Justino, E., Tomakin, E., & Mullin, G. E. (2014). Herbal therapy is equivalent to rifaximin for the treatment of small intestinal bacterial overgrowth. Global advances in health and medicine, 3(3), 16–24. https://doi.org/10.7453/gahmj.2014.019
  9. Furnari, M., Parodi, A., Gemignani, L., Giannini, E. G., Marenco, S., Savarino, E., Assandri, L., Fazio, V., Bonfanti, D., Inferrera, S., & Savarino, V. (2010). Clinical trial: the combination of rifaximin with partially hydrolysed guar gum is more effective than rifaximin alone in eradicating small intestinal bacterial overgrowth. Alimentary pharmacology & therapeutics, 32(8), 1000–1006. https://doi.org/10.1111/j.1365-2036.2010.04436.x
  10. Marino, M., Del Bo’, C., Martini, D., Perna, S., Porrini, M., Cherubini, A., Gargari, G., Meroño, T., Hidalgo-Liberona, N., Andres-Lacueva, C., Kroon, P. A., Guglielmetti, S., & Riso, P. (2024). A (poly)phenol-rich diet reduces serum and faecal calprotectin in older adults with increased intestinal permeability: the MaPLE randomised controlled trial. BMC geriatrics, 24(1), 707. https://doi.org/10.1186/s12877-024-05272-y
  11. Del Bo’, C., Bernardi, S., Cherubini, A., Porrini, M., Gargari, G., Hidalgo-Liberona, N., González-Domínguez, R., Zamora-Ros, R., Peron, G., Marino, M., Gigliotti, L., Winterbone, M. S., Kirkup, B., Kroon, P. A., Andres-Lacueva, C., Guglielmetti, S., & Riso, P. (2021). A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clinical nutrition (Edinburgh, Scotland), 40(5), 3006–3018. https://doi.org/10.1016/j.clnu.2020.12.014
  12. Abbasi, F., Haghighat Lari, M. M., Khosravi, G. R., Mansouri, E., Payandeh, N., & Milajerdi, A. (2024). A systematic review and meta-analysis of clinical trials on the effects of glutamine supplementation on gut permeability in adults. Amino acids, 56(1), 60. https://doi.org/10.1007/s00726-024-03420-7

Weiterlesen

Verarbeitete Lebensmittel: Wann sie schädlich für die Darmgesundheit sind

Isst Du viele verarbeitete Lebensmittel? Das muss nicht unbedingt schlecht sein für Deine Darmgesundheit – es kann allerdings. Denn verarbeitete Lebensmittel sind per se nicht schlecht: Einige Lebensmittel müssen überhaupt erst verarbeitet werden, damit sie genießbar bzw. für uns verdaulich werden (die meisten Hülsenfrüchte), oder einen größeren gesundheitlichen Nutzen für uns haben (bspw. fermentierte Produkte wie Sauerkraut).

In diesem Blogbeitrag gehen wir auf eine bestimmte Form verarbeiteter Lebensmittel ein: Erhitzte Lebensmittel. Nach dem Lesen wirst Du verstehen, wieso diese für Deine Darmgesundheit potentiell schädlich sind – und ursächlich für Darmleiden wie Reizdarm oder Leaky Gut sein können. Ebenso werden wir Dir sagen, was Du tun kannst, um Deine Darmgesundheit gegen die negativen Auswirkungen erhitzter Lebensmittel zu schützen.

Hinweis: Wie immer sind die Informationen in unserem Artikel von uns selbst recherchiert und geschrieben – ohne Beteiligung von ChatGPT und Konsorten. Viel Spaß beim Lesen!

Wichtigste Erkenntnisse vorab

  • AGEs können für oxidativem Stress, Entzündungsreaktionen im Darm und Leaky Gut ursächlich sein. Zudem können AGEs unser Mikrobiom beeinflussen.
  • Vor allem die Aufnahme verarbeiteter Lebensmittel kann die Konzentration von AGEs in unserem Körper erhöhen.
  • Antioxidantien, Polyphenole, Pro- und Präbiotika, sowie Mikronährstoffe können dabei unterstützen, die Konzentration von AGEs in unserem Körper zu senken.

Definition und Ursprung von AGEs

AGEs steht für “Advanced Glycation End Products” oder auf deutsch für “fortgeschrittenes Verzuckerungs-Endprodukt”. Es handelt sich dabei um Proteine, Fette oder andere Moleküle, die mit Zuckern reagiert haben und aufgrund dieser Reaktion in ihrer molekularen Struktur verändert wurden.

Im Gegensatz zu vielen normalen biochemischen Reaktionen im Körper findet die für AGEs ursächliche Glykisierung (Verzuckerung) nicht-enzymatisch statt; also ohne, dass wie sonst üblich Enzyme die Reaktion kontrolliert durchführen. Durch Glykisierung hängen nun Zuckerreste an diesen veränderten Molekülen. Das Fatale: Diese Reaktion, genannt Maillard-Reaktion, ist irreversibel, kann also nicht umgekehrt werden. AGEs bestehen somit im Körper fort und können potenziell Schaden anrichten.

AGEs sind an der Entwicklung verschiedener chronischer Entzündungserkrankungen beteiligt, unter anderem an Diabetes mellitus Typ II, Gefäß- und Herz-Kreislauferkrankungen, Osteoporose und Arthritis. Wie Du vielleicht bereits vermutest, können AGEs auch bei Darmerkrankungen wie Reizdarm und Leaky Gut eine Rolle spielen.

AGEs können im Körper selbst entstehen; dann sprechen wir von endogenen AGEs. Sie können sich auch bereits in Lebensmitteln befinden, die wir zu uns nehmen; wir nennen diese Art von AGEs exogene AGEs.

  • Endogene AGEs

    Endogene AGEs werden im Körper in allen Geweben und Körperflüssigkeiten gebildet, beispielsweise im Blut. Hier ist unter anderem bekannt, dass bei erhöhter Blutzuckerkonzentration, wie es bei Diabetes oder Insulinresistenz der Fall ist, vermehrt das AGE HbA1c gebildet wird, ein glykiertes Hämoglobin (roter Blutfarbstoff).

    Ein weiteres Beispiel für die Entstehung von AGEs ist die Glykierung langlebiger Proteine wie Kollagen und Elastin im Bindegewebe, was mit einer verminderten Gewebeelastizität und der Entwicklung von Komplikationen wie Arteriosklerose assoziiert ist1.

    Dieses und andere AGEs können dann unter anderem reaktive Sauerstoff- (ROS) und Stickstoffspezies (RNS) – auch freie Radikale genannt – sowie Entzündungen erzeugen, was zu Proteinveränderungen, zellulärer Dysfunktion und Apoptose (programmierter Zelltod), und schließlich zu Verletzungen mehrerer Gewebe/Organe führt2.

  • Exogene AGEs

    Exogene AGEs werden hauptsächlich über die Nahrung aufgenommen. Auch Tabak enthält AGEs bzw. fördert deren Entstehung. Exogene AGEs entstehen bei der Verarbeitung von Lebensmitteln unter Hitze, insbesondere durch Braten, Grillen, Backen und Rösten: Hohe Temperaturen, niedrige Feuchtigkeit und längere Garzeiten begünstigen die Bildung von AGEs3.

    Die durch Lebensmittel aufgenommene Menge an AGEs variiert stark zwischen verschiedenen Ernährungsweisen. Dabei scheint es zunehmend klarer, dass die klassische westliche Ernährungsweise einen wesentlich größeren AGE-Anteil zu haben scheint als andere Ernährungsformen. (Als “westliche Ernährungsweise” verstehen wir einen hohen Konsum von Lebensmitteln mit geringem Sättigungseffekt und wenig Mikronährstoffen.)

Welchen Einfluss hat die Ernährung auf die Aufnahme von AGEs?

Die Verarbeitung von Lebensmitteln hat einen Einfluss auf ihren AGE-Gehalt. Gleichzeitig ist uns bekannt, dass eine Ernährungsweise mit einem größeren Anteil an verarbeiteten Lebensmitteln potenziell gesundheitsschädigend ist. Weiterhin wissen wir, dass eine hohe Zufuhr exogener AGEs mit erhöhten Entzündungsmarkern sowie Insulinresistenz korreliert4,5.

Daraus ergibt sich die Hypothese, dass AGEs zumindest teilweise für die erhöhten Entzündungsmarker und Insulinresistenz verantwortlich sein können. Auch wenn es sich derzeit nicht abschließend beweisen lässt, liegen eindeutige Hinweise vor, dass der Verarbeitungsgrad von Lebensmitteln und der Gehalt von AGEs miteinander zusammenhängen, wie wir im Folgenden zeigen:

Fleisch mehr AGEs als Gemüse
  • Fleischprodukte, auch roh, enthalten höhere Konzentrationen an AGEs als pflanzliche Produkte. Dieser Gehalt wird zusätzlich erhöht bei Verarbeitung mittels trockener Hitze (Grillen, Braten)6.
  • Somit ergibt sich, dass eine Ernährung reich an verarbeitetem Fleisch oder anderen stark erhitzten Lebensmitteln (wie Fast Food und Fertiggerichten, die typisch-westliche Diät) einen besonders hohen Anteil an AGEs enthält.
  • Weiterhin bedeutet es, dass Ernährungsweisen mit einem hohen pflanzlichen Anteil und schonenderer Zubereitung tendenziell weniger AGEs enthalten. Ein Beispiel hierfür ist die mediterrane Ernährung – wenn sie denn nicht nur aus Pizza besteht. Auch eine vegetarische bzw. vegane Ernährung scheint mit einer geringeren Aufnahme von AGEs einherzugehen, da pflanzliche Nahrungsmittel unter Verarbeitung durch Hitze grundsätzlich weniger AGEs enthalten.
  • Allerdings: Zum letzten Punkt lassen sich durchaus gegensätzliche Ergebnisse finden – insgesamt kommt es auch bei einer pflanzlichen Diät anscheinend auf den Verarbeitungsgrad der Lebensmittel an7. Der niedrigste Gehalt an AGEs lässt sich vermutlich bei der Rohkost-Ernährung feststellen, da hierbei Lebensmittel erst gar nicht erhitzt werden8.

Es zeigt sich, dass die Ernährungsform einen wesentlichen Einfluss auf die Aufnahme von AGEs hat. Durch die Wahl schonender Garmethoden (z. B. Dünsten statt Grillen) und den Verzehr frischer, unverarbeiteter Lebensmittel lässt sich die Aufnahme von AGEs wohl reduzieren.

Nun können wir klären, welchen Einfluss AGEs auf unsere Gesundheit und besonders auf unseren Darm, der ständig mit AGEs konfrontiert wird, haben.

Welchen Einfluss haben AGEs auf Deinen Darm und Gesundheit?

AGEs beeinflussen sowohl unsere Darmgesundheit als auch systemische Erkrankungen durch ihre proinflammatorischen, oxidativen und glykierenden Eigenschaften. Ihre Wirkung entfalten AGEs dabei auf unterschiedliche Art und Weise. Einer dieser Wirkungsmechanismen ist die Aktivierung des AGE-Rezeptors (RAGE), der wohl auch teilweise für die altersbedingte Neigung zu Entzündungserkrankungen verantwortlich zu sein scheint. Zu typischen chronisch-entzündlichen Erkrankungen zählen neben Diabetes und Atherosklerose auch diverse Darmerkrankungen. Im Folgenden konzentrieren wir uns vor allem auf die Effekte von AGEs und dem Rezeptor RAGE auf unsere Darmgesundheit.

RAGE ist für seine entzündungsfördernden Effekte bekannt – so auch im Darm. Es gibt Hinweise darauf, dass AGEs, unter anderem über die Wirkung am RAGE-Rezeptor, entzündungsfördernd wirken und Störungen wie das Reizdarmsyndrom begünstigen könnten1. Dies zeigt sich bisher vor allem im Rahmen von Tierstudien: Tiere erhielten hier eine Ernährung besonders reich an AGEs verabreicht – vermehrter oxidativer Stress, Entzündungsreaktionen im Darm und erhöhte Durchlässigkeit des Darms (Leaky Gut) waren die Folge11,12. (Zu wissenschaftlichen Erkenntnissen und effektiven Maßnahmen bei Leaky Gut haben wir im letzten Blogbeitrag geschrieben.)

Weiterhin bestehen Hinweise, dass AGEs das Darmmikrobiom (negativ) beeinflussen. Eine systematische Übersichtsarbeit lieferte das Ergebnis, dass es bei hohem AGE-Konsum durchaus zu Änderungen der Mikrobiomzusammensetzung kommen kann, beispielsweise zur Reduktion von Laktobazillen oder butyratbildenden Bakterien. (Wieso die kurzkettige Fettsäure Butyrat wichtig für Deine Darmgesundheit ist, kannst Du in diesem Beitrag lesen.) Es ist hierbei noch nicht vollends geklärt, inwiefern sich eine AGE-arme Ernährung protektiv auf unsere Darmflora auswirkt1.

Auch über den Darm hinaus wirken sich AGEs negativ aus. So tragen AGEs auch potenziell zur Entstehung von Insulinresistenz12, Atherosklerose und Nierenerkrankungen (vor allem diabetesbedingt) sowie weiteren altersbedingten, vor allem entzündlichen Erkrankungen bei. Eine Reduktion der AGEs ist daher ein vielversprechender Ansatz, das Risiko für mit AGEs in Verbindung stehenden Erkrankungen zu mindern. Ob und wie das funktioniert, erfährst Du im folgenden Abschnitt.

Wie kannst Du die Aufnahme von AGEs reduzieren?

Es gibt viele Ansätze, die Gesamtmenge an AGEs in Deinem Körper zu reduzieren. In erster Linie gehört eine Ernährungsumstellung auf weniger verarbeitete, weniger heiß und trocken erhitzte Lebensmittel sowie mehr pflanzliche Quellen13. Darüber hinaus gibt es erste Hinweise darauf, dass einige Polyphenole, Pro- und Präbiotika und andere Mikronährstoffe helfen können, die Gesamtmenge an AGEs im Körper zu verringern.

Hierbei gibt es unterschiedliche Ansätze: Darunter die Hemmung der Glykierungsreaktionen (auch wenn diese nicht-enzymatisch sind, kann das Milieu verändert werden), die Verminderung des Blutzuckers oder die Stärkung des antioxidativen Systems, da die Bildung von AGEs durch Stress gefördert wird14. Auch eine Hemmung des Signalwegs über den RAGE-Rezeptor wird in Betracht gezogen.

Im Folgenden blicken wir auf aktuelle Forschungsergebnisse zu möglichen natürlichen Stoffen, die die Bildung von AGEs hemmen bzw. AGEs eliminieren können.

  • Antioxidantien

    Antioxidantien sind eine Gruppe an Stoffen, die sogenannte freie Radikale reduzieren können. Dadurch können Antioxidantien Deine Zellen vor oxidativem Stress schützen. Viele Stoffe, die zu den Antioxidantien zählen, erfüllen darüber hinaus weitere Funktionen.

    Polyphenole (sekundäre Pflanzenstoffe) wie jene aus dem Traubenkern (bspw. OPC), Quercetin oder auch Resveratrol verfügen über das Potential, AGEs zu reduzieren. Eine Übersichtsarbeit von fünf randomisierten kontrollierten Studien kommt zu dem Ergebnis, dass Traubenkern-Polyphenole einen positiven Effekt auf die AGE-Reduktion haben können15. Die Polyphenole verhinderten unter anderem die Bildung von AGEs und könnten in Lebensmitteln protektiv eingesetzt werden. In einer in-vitro Studie wurden weitere Antioxidantien, darunter Vitamin C und Quercetin, an einem Modell zur Hemmung der AGE-Bildung eingesetzt – mit Erfolg16.

    Auch Curcumin, der sekundäre Pflanzenstoff der Kurkuma-Wurzel, zeigt sich vielversprechend. In einer Analyse unter anderem einer Humanstudie und diversen in-vivo (an Tieren) und in-vitro Studien kam zu dem Schluss, dass Curcumin einen hemmenden Effekt auf die Bildung von AGEs und die Folgereaktionen, die AGEs eingehen, hat. Weitere klinische Studien sind nötig, um diesen Effekt genauer zu untersuchen17.

  • Probiotika

    Da die meisten exogenen AGEs in den Darm zur Aufnahme gelangen, ist es naheliegend, dass das Darmmikrobiom und die Verdauung ebenfalls eine Rolle in der Modulation der AGEs spielen. So gibt es Hinweise darauf, dass eine Veränderung des Darmmikrobioms die Aufnahme von AGEs verringern bzw. die gesundheitlichen Folgen von AGEs teilweise neutralisieren kann18. Im Speziellen geht es dabei um Probiotika, also um lebende Bakterienstämme, die eingenommen werden, um das Darmmikrobiom zu bereichern. (Wann Probiotika zudem nützlich für Deine Darmgesundheit sein können, haben wir hier beschrieben.)

    Ein Beispiel für die praktische Anwendung von Probiotika zur Reduktion von AGEs ist Diabetes mellitus Typ 2, wobei Patienten typischerweise erhöhte HbA1c-Level aufweisen:

    • In einer Metaanalyse wurden 30 randomisierte kontrollierte Studien mit insgesamt 1827 Diabetes-Patienten analysiert19. Neben anderen Parametern, die die klinische Situation der Patienten beurteilen, reduzierte sich auch der HbA1c-Wert signifikant nach der Supplementierung mit Probiotika.
    • In einer weiteren Metaanalyse konnte außerdem ein klarer, potenziell ursächlicher Zusammenhang zwischen diversen Veränderungen des Darmmikrobioms und der Entstehung von Diabetes mellitus Typ 2 festgestellt werden20. Weiterhin wurden erneut reduzierte HbA1c-Werte in der Probiotika-Gruppe festgestellt.
  • Präbiotika

    Präbiotika – das sind bestimmte Ballaststoffe, die den Darmbakterien als Nahrung dienen und damit deren Wachstum fördern – spielen eine wichtige Rolle für unsere Darmgesundheit. (Erfahre in diesem Artikel, wieso der Ballaststoff PHGG vorteilhaft für Deine Darmgesundheit sein kann.) Auch Präbiotika werden aktuell genauer hinsichtlich ihres Potentials zur Reduktion von AGEs bei Diabetes mellitus Typ 2 untersucht:

    • So wurde in einer randomisierten kontrollierten Studie mit 56 Teilnehmern mit Diabetes mellitus Typ 2 der Einfluss von Präbiotika (resistentes Dextrin) auf die Konzentrationen von AGEs sowie kardiovaskuläre Risikofaktoren untersucht21. Hierbei konnte sowohl eine signifikante Reduktion einiger AGEs als auch die Verbesserung einiger Laborwerte (u. a. Triglyceride, hsCRP, atherogener Index) festgestellt werden.
    • Eine weitere Studie mit 53 prädiabetischen Patienten befasste sich mit dem Effekt einer Mischung aus Präbiotika (Konjakglukomannan & Galaktooligosaccharide) und einem Postbiotikum (pasteurisierte Bakterien) auf die Diabetes-Werte und die Zusammensetzung des Darmmikrobioms22. Das Ergebnis: Die zwölfwöchige Intervention führte zu einer Verringerung des HbA1c-Werts unter den prädiabetischen Schwellenwert sowie zu einer Erhöhung butyratproduzierender Bakterien.
  • Unser Tipp: Akazienfasern

    Ein Präbiotikum, welches wir Dir ans Herz legen möchten, sind Akazienfasern. Schon lange als Gummi Arabicum genutzt, gerät es jetzt in den Fokus aufgrund seines Aufbaus. Es handelt sich um ein komplexes Polysaccharid, also um einen besonders langkettigen Zucker, der damit präbiotische Effekte haben kann.
    In Studien zeigt sich der Ballaststoff zudem vielversprechend:

    • Eine Studie mit 80 Teilnehmern, die ein erhöhtes Risiko für das metabolische Syndrom hatten, konnte unter anderem über einen positiven Effekt auf den Nüchtern-Blutzuckerwert und den Blutdruck berichtet werden.
    • In einer systematischen Übersichtsarbeit wurde die bisherige Evidenz weiter zusammengetragen, wobei zu den in Studien berichteten Effekten von Akazienfasern unter anderem eine Verbesserung der Blutfettwerte, des Nierenstatus, des Blutdrucks, der Entzündungswerte und eine Verbesserung von Adipositas-Zuständen zählte.
    • Auch zur Unterstützung der Behandlung von gastrointestinalen Erkrankungen wurde das Präbiotikum genutzt.

    Falls Du Akazienfaser einnehmen möchtest: easyACACIA gibt es in unserem Shop, und zwar in Bio-Qualität!

Zusammenfassung

Wir hoffen, dass wir Dir einen Einblick geben konnten, wie Du Deinen Körper am besten bei der Reduktion von AGEs unterstützen kannst. Neben einer gesunden, ausgewogenen Ernährung und schonenden Zubereitungsmethoden Deiner Lebensmittel können Dich vor allem Polyphenole, Antioxidantien, Probiotika sowie Präbiotika dabei unterstützen, weniger AGEs aufzunehmen bzw. weniger AGEs in Deinem Körper entstehen zu lassen.

Wir hoffen, Dir hat dieser Einblick gefallen. Von diesem mittlerweile schon recht großen Gebiet der Forschung werden wir wohl noch einiges hören – wir dürfen also gespannt bleiben, welche Effekte und Strategien rund um AGEs noch entdeckt werden.


Referenzen (Englisch)
  1.  Gkogkolou, P., & Böhm, M. (2012). Advanced glycation end products: Key players in skin aging?. Dermato-endocrinology, 4(3), 259–270. https://doi.org/10.4161/derm.22028
  2.  Rungratanawanich, W., Qu, Y., Wang, X., Essa, M. M., & Song, B. J. (2021). Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Experimental & molecular medicine, 53(2), 168–188. https://doi.org/10.1038/s12276-021-00561-7
  3.  Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., Yong, A., Striker, G. E., & Vlassara, H. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110(6), 911–16.e12. https://doi.org/10.1016/j.jada.2010.03.018
  4.  Song, F., & Schmidt, A. M. (2012). Glycation and insulin resistance: novel mechanisms and unique targets?. Arteriosclerosis, thrombosis, and vascular biology, 32(8), 1760–1765. https://doi.org/10.1161/ATVBAHA.111.241877
  5.  Pinto-Junior, D.C., Silva, K.S., Michalani, M.L. et al. (2018). Advanced glycation end products-induced insulin resistance involves repression of skeletal muscle GLUT4 expression. Sci Rep 8, 8109. https://doi.org/10.1038/s41598-018-26482-6
  6.  Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B. S., Uribarri, J., & Vlassara, H. (2004). Advanced glycoxidation end products in commonly consumed foods. Journal of the American Dietetic Association, 104(8), 1287–1291. https://doi.org/10.1016/j.jada.2004.05.214
  7.  Sebeková, K., Krajcoviová-Kudlácková, M., Schinzel, R., Faist, V., Klvanová, J., & Heidland, A. (2001). Plasma levels of advanced glycation end products in healthy, long-term vegetarians and subjects on a western mixed diet. European journal of nutrition, 40(6), 275–281. https://doi.org/10.1007/s394-001-8356-3
  8.  Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., Yong, A., Striker, G. E., & Vlassara, H. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110(6), 911–16.e12. https://doi.org/10.1016/j.jada.2010.03.018
  9.  Chaudhuri, J., Bains, Y., Guha, S., Kahn, A., Hall, D., Bose, N., Gugliucci, A., & Kapahi, P. (2018). The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell metabolism, 28(3), 337–352. https://doi.org/10.1016/j.cmet.2018.08.014
  10.  Snelson, M., Tan, S. M., Clarke, R. E., de Pasquale, C., Thallas-Bonke, V., Nguyen, T. V., Penfold, S. A., Harcourt, B. E., Sourris, K. C., Lindblom, R. S., Ziemann, M., Steer, D., El-Osta, A., Davies, M. J., Donnellan, L., Deo, P., Kellow, N. J., Cooper, M. E., Woodruff, T. M., Mackay, C. R., … Coughlan, M. T. (2021). Processed foods drive intestinal barrier permeability and microvascular diseases. Science advances, 7(14), eabe4841. https://doi.org/10.1126/sciadv.abe4841
  11.  Shangari, N., Depeint, F., Furrer, R., Bruce, W. R., Popovic, M., Zheng, F., & O’Brien, P. J. (2007). A thermolyzed diet increases oxidative stress, plasma alpha-aldehydes and colonic inflammation in the rat. Chemico-biological interactions, 169(2), 100–109. https://doi.org/10.1016/j.cbi.2007.05.009
  12.  Portero-Otin, M., de la Maza, M. P., & Uribarri, J. (2023). Dietary Advanced Glycation End Products: Their Role in the Insulin Resistance of Aging. Cells, 12(13), 1684. https://doi.org/10.3390/cells12131684
  13.  Del Castillo, M. D., Iriondo-DeHond, A., Iriondo-DeHond, M., Gonzalez, I., Medrano, A., Filip, R., & Uribarri, J. (2021). Healthy eating recommendations: good for reducing dietary contribution to the body’s advanced glycation/lipoxidation end products pool?. Nutrition research reviews, 34(1), 48–63. https://doi.org/10.1017/S0954422420000141
  14.  Wang, L., Jiang, Y., & Zhao, C. (2024). The effects of advanced glycation end-products on skin and potential anti-glycation strategies. Experimental dermatology, 33(4), e15065. https://doi.org/10.1111/exd.15065
  15.  Sri Harsha, P. S. C., & Lavelli, V. (2019). Use of Grape Pomace Phenolics to Counteract Endogenous and Exogenous Formation of Advanced Glycation End-Products. Nutrients, 11(8), 1917. https://doi.org/10.3390/nu11081917
  16.  Grzebyk, E., & Piwowar, A. (2016). Inhibitory actions of selected natural substances on formation of advanced glycation endproducts and advanced oxidation protein products. BMC complementary and alternative medicine, 16(1), 381. https://doi.org/10.1186/s12906-016-1353-0
  17.  Alizadeh, M., & Kheirouri, S. (2019). Curcumin against advanced glycation end products (AGEs) and AGEs-induced detrimental agents. Critical reviews in food science and nutrition, 59(7), 1169–1177. https://doi.org/10.1080/10408398.2017.1396200
  18.  Aschner, M., Skalny, A. V., Gritsenko, V. A., Kartashova, O. L., Santamaria, A., Rocha, J. B. T., Spandidos, D. A., Zaitseva, I. P., Tsatsakis, A., & Tinkov, A. A. (2023). Role of gut microbiota in the modulation of the health effects of advanced glycation end‑products (Review). International journal of molecular medicine, 51(5), 44. https://doi.org/10.3892/ijmm.2023.5247
  19.  Li, G., Feng, H., Mao, X. L., Deng, Y. J., Wang, X. B., Zhang, Q., Guo, Y., & Xiao, S. M. (2023). The effects of probiotics supplementation on glycaemic control among adults with type 2 diabetes mellitus: a systematic review and meta-analysis of randomised clinical trials. Journal of translational medicine, 21(1), 442. https://doi.org/10.1186/s12967-023-04306-0
  20.  Liu, T., Cao, Y., Liang, N., Ma, X., Fang, J. A., & Zhang, X. (2024). Investigating the causal association between gut microbiota and type 2 diabetes: a meta-analysis and Mendelian randomization. Frontiers in public health, 12, 1342313. https://doi.org/10.3389/fpubh.2024.1342313
  21.  Farhangi, M. A., Dehghan, P., & Namazi, N. (2020). Prebiotic supplementation modulates advanced glycation end-products (AGEs), soluble receptor for AGEs (sRAGE), and cardiometabolic risk factors through improving metabolic endotoxemia: a randomized-controlled clinical trial. European journal of nutrition, 59(7), 3009–3021. https://doi.org/10.1007/s00394-019-02140-z
  22.  Beteri, B., Barone, M., Turroni, S., Brigidi, P., Tzortzis, G., Vulevic, J., Sekulic, K., Motei, D. E., & Costabile, A. (2024). Impact of Combined Prebiotic Galacto-Oligosaccharides and Bifidobacterium breve-Derived Postbiotic on Gut Microbiota and HbA1c in Prediabetic Adults: A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients, 16(14), 2205. https://doi.org/10.3390/nu16142205
  23.  Jarrar, A. H., Stojanovska, L., Apostolopoulos, V., Feehan, J., Bataineh, M. F., Ismail, L. C., & Al Dhaheri, A. S. (2021). The Effect of Gum Arabic (Acacia Senegal) on Cardiovascular Risk Factors and Gastrointestinal Symptoms in Adults at Risk of Metabolic Syndrome: A Randomized Clinical Trial. Nutrients, 13(1), 194. https://doi.org/10.3390/nu13010194
  24.  Al-Jubori, Y., Ahmed, N. T. B., Albusaidi, R., Madden, J., Das, S., & Sirasanagandla, S. R. (2023). The Efficacy of Gum Arabic in Managing Diseases: A Systematic Review of Evidence-Based Clinical Trials. Biomolecules, 13(1), 138. https://doi.org/10.3390/biom13010138

Weiterlesen

Leaky Gut: Wissenschaftliche Erkenntnisse & effektive Maßnahmen zur Regeneration Deines Darms

Hast Du schon einmal von Leaky Gut gehört – oder hast Du es vielleicht sogar? Beim sogenannten Leaky Gut Syndrom handelt es sich um eine vermehrt durchlässige Darmbarriere, übersetzt aus dem Englischen auch “löchriger Darm”. Anders als es klingt, ist Leaky Gut aber kein akuter Notfall, sondern ein chronischer, meist entzündlicher Prozess, der sich über einen langen Zeitraum entwickelt und über Jahre zu Beschwerden führt, die auch erstmal schlecht einzuschätzen sind. Heute geht es also um dieses Syndrom, warum die Darmbarriere so wichtig für Deine Gesundheit ist und welche Ansätze es gibt, diese zu stärken.

Diese Themen erwarten Dich in diesem Beitrag:

  • Was ist das Leaky Gut Syndrom – ist es eine Krankheit?
  • Symptome und Entstehung von Leaky Gut
  • Wie Du Deinen Darm bei Leaky Gut wieder stärken kannst: die Rolle von Ballaststoffen und Nährstoffen

Hinweis: Wie immer sind die Informationen in unserem Artikel von uns selbst recherchiert und geschrieben – ohne Beteiligung von ChatGPT und Konsorten. Viel Spaß beim Lesen!

Die wichtigsten Erkenntnisse vorab:

  • Leaky Gut kann eine Reihe an Symptomen des Darmtrakts verursachsen, und auch für viele Erkrankungen ursächlich sein
  • Eine Darmdysbiose, physischer Stress, vemrinderte Durchblutung, Infektionen und Ernährung spielen bei der Entstehung von Leaky Gut eine entscheidende Rolle
  • Mit Mikronährstoffen, sekundären Pflanzenstoffen, Aminosäuren und Ballaststoffen kannst Du Deinen Darm bei Leaky Gut stärken

Was ist das Leaky Gut Syndrom – ist es eine Krankheit?

Das Leaky Gut Syndrom bedeutet durchlässiger Darm und ist, zumindest noch, kein feststehender Krankheitsbegriff. Das liegt daran, dass das Krankheitsbild zum einen noch recht neu ist und sich zum anderen stark mit anderen, meist chronisch-entzündlichen Erkrankungen überschneidet. Ob nun feststehende Krankheit oder nicht, man kann diesem Syndrom seinen Krankheitswert nicht absprechen, denn die Symptome und die Menge an Betroffenen stehen für sich.

Symptome von Leaky Gut

Die Symptome des durchlässigen Darms sind weitreichend, die meisten Betroffenen klagen jedoch meist über chronische, wiederkehrende Bauchschmerzen, Blähungen, Durchfall und Bauchkrämpfe.

Mit dem Leaky Gut Syndrom werden weiterhin eine Reihe anderer Erkrankungen assoziiert – das heißt, unter anderem diese Erkrankungen treten gehäuft bei Leaky Gut Patienten auf:

  • Hauterkrankungen (z. B. Akne, Rosazea, Schuppenflechte1, Neurodermitis)
  • chronische Gelenk- und Muskelschmerzen sowie Entzündungen
  • chronische Entzündungen (auch chronisch-entzündliche Darmerkrankungen)
  • Autoimmunerkrankungen (z. B. Hashimoto, Multiple Sklerose, Diabetes mellitus, rheumatische Erkrankungen)

Übersicht: Symptome von Leaky Gut

  • Bauchschmerzen, Blähungen, Durchfall, Bauchkrämpfe
  • Verstopfung
  • Kopfschmerzen
  • Müdigkeit/Schlappheit/Leistungsabfall
  • Nahrungsmittelunverträglichkeiten
  • Nahrungsmittelallergien
  • Stimmungsschwankungen und Depression

Diese Übersicht lässt recht schnell einen gemeinsamen Nenner erkennen: Entzündungen2. Diese sind vermutlich auch stark an der Entstehung des Leaky Gut beteiligt. Wie man auf das Leaky Gut Syndrom übrigens testet, erfährst Du hier, in einem weiteren Blogartikel über das spannende Thema.

Um zu wissen, wie wir am besten gegen das Problem angehen, lass’ uns aber zuerst einmal auf die Entstehung, also die Pathogenese blicken.

Entstehung von Leaky Gut – Pathogenese

Die Darmschleimhaut ist in zwei Schichten – eine innere und eine äußere – gegliedert. Die innere Schicht ist für Bakterien undurchlässig und bildet eine Barriere, die Mikroorganismen vom Epithel trennt. Sie ist auch für die Rehydrierung und Regeneration verantwortlich und dient als Schutzschild gegen Verdauungsenzyme. Damit sie diese Funktionen erfüllen kann, ist die Darmbarriere stark reguliert und über sogenannte Tight Junctions (auch Zonula occludens, Zellkontakte) eng verknüpft – und damit das, was wir unter Darmbarriere verstehen.

Darmbarriere Schutzschichten Dysbiose Eubiose

Beim Leaky Gut Syndrom ist diese innere Schicht “undicht”. Hier geht diese Verknüpfung durch Tight Junctions teilweise verloren, beispielsweise durch entzündliche Veränderungen3, und es bilden sich kleine Lücken zwischen den Zellen, durch die Stoffe tatsächlich durch die Barriere gelangen können – der einst regulierte Prozess, welche Stoffe, die Darmbarriere passieren können, wird dysreguliert.

Ursachen für die Entstehung des Leaky Gut Syndroms sind nicht vollständig bekannt, dazu gehören jedoch neben einem entzündlichen Milieu auch ein dysbiotisches Darmmikrobiom – zum Beispiel durch die Fehlbesiedlung mit unserer Darmgesundheit schädlichen Mikroben, beispielsweise Enterococcus gallinarum3. Auch physischer Stress, eine verminderte Durchblutung des Darms, Infektionen (bspw. durch Campylobacter jejuni) und Ernährungsgewohnheiten4 (ballaststoffarm, fruktosereich) können zu der Entstehung des Leaky Gut Syndroms beitragen.

Auf der anderen Seite gibt es Faktoren, die Deine Darmbarriere stärken, beispielsweise ballaststoffreiche Nahrungsmittel.

Ballaststoffe bei Leaky Gut

Ballaststoffe werden von den im Darm ansässigen Bakterien verstoffwechselt. Die bei dieser Verstoffwechslung entstehenden Stoffwechselprodukte verfügen über barrierestärkende Effekte. So zeigt sich, dass Butyrat, eine der wichtigsten Stoffwechselprodukte der Darmflora, schützend auf die Barriere- und Tight-Junction-Funktion wirkt, antientzündliche Effekte aufweist sowie das Wachstum potenzieller Erreger und “schädlicher” Darmbakterien hemmt. Gleichzeitig trägt Butyrat zur Energieproduktion der Darmschleimhaut bei, was die oben bereits erwähnten positiven Auswirkungen fördert.5 (Welche weiteren überzeugenden Eigenschaften Butyrat für Deine Darmgesundheit haben kann, kannst Du in diesem Beitrag nachlesen.)

Welche Ernährungs- und Lebensgewohnheiten bei Leaky Gut im Detail wichtig sind, erfährst Du hier. Manchmal erfordert es über die Veränderung der Ernährungsgewohnheiten und die Reduktion von Stress hinaus jedoch noch zusätzliche Unterstützung zur Regulation der Darmbarriere. Genau hier setzt auch die derzeitige Evidenz an.

Welche Wirkstoffe können also potenziell dabei helfen, Deine Darmbarriere zu stärken?

Wie kannst Du Deinen Darm stärken?

Grundsätzlich diskutiert werden Mikronährstoffe wie Vitamine und Mineralstoffe, sekundäre Pflanzenstoffe, Aminosäuren und spezielle Kohlenhydrate bzw. Ballaststoffe. Es ist vor diesem Kontext wichtig zu erwähnen, dass es sich hier um ein extrem breites Feld handelt und wir daher hier nur ausgewählte Wirkstoffe ansprechen werden.

  • Aminosäuren für die Darmbarrriere?

    Beginnen wir gleich mit einer größeren Gruppe, den Aminosäuren

    Eine der Aminosäuren, die am meisten zur Diskussion stehen, die Darmbarriere zu stärken, ist L-Glutamin. L-Glutamin ist eine nicht-essenzielle, aber proteinogene (in Proteinen enthalten) Aminosäure, die bekannterweise bevorzugt von der Darmschleimhaut als Energiequelle genutzt wird.

    • Weiterhin nimmt L-Glutamin Einfluss auf das Immunsystem: So zeigte sich in einer klinischen Studie, dass sich die Gabe von L-Glutamin förderlich auf die Darmbarriere bei postinfektiösem Reizdarmsyndrom auswirkte6.
    • Auch für sportinduzierte Darmpermeabilitätsstörungen könnte die Gabe von L-Glutamin relevant sein – so eine weitere randomisierte kontrollierte Studie7.
    • Die genaue Dosis sowie die Anwendungsdauer sind jedoch noch nicht bekannt und dürften sich zwischen den Anwendungsgebieten unterscheiden, generell werden aber häufig Bereiche zwischen 5-8 Gramm pro Tag angegeben.

    Weitere Aminosäuren, die eine Relevanz für die Darmbarriere haben könnten, sind Glycin, die kleinste und universellste Aminosäure des menschlichen Körpers, und L-Cystein, eine schwefelhaltige Aminosäure mit antioxidativem Potenzial. Beide Aminosäuren sind Bestandteil des wichtigen körpereigenen Antioxidans Glutathion.

    • Erste Studien an Tieren zeigen eine Reduktion der Darmpermeabilität nach L-Cystein (bzw. N-Acetylcystein) Gabe8,9. Obwohl die Lage also vielversprechend ist, stehen weitere Studien noch aus.
    • Weitere Aminosäuren stehen ebenfalls zur Debatte – nennenswert sind hier unter anderem L-Prolin, L-Serin und L-Tryptophan.
  • Polyphenole & Antioxidantien bei Leaky Gut

    Wie bereits erwähnt, übernehmen antioxidative Substanzen eine potenzielle Rolle in der Behandlung einer durchlässigeren Darmbarriere. Dazu gehören auch Polyphenole, eine Gruppe an pflanzenstämmigen Substanzen. Besondere Aufmerksamkeit erhalten in diesem Kontext die Anthocyane (eine Gruppe an Polyphenolen, genauer an wasserlöslichen Pflanzenfarbstoffen), die auch beispielsweise in Heidelbeeren enthalten sind.

    • So wurde in einer randomisierten kontrollierten Studie der Einfluss einer polyphenolreichen Ernährung (724 mg/Tag) auf die Parameter für die Darmbarriere gezeigt – hier konnten die fäkalen und Serum-Calprotectin-Werte gesenkt und die Tight Junction-Expression (ZO-1) erhöht werden, was auf eine verbesserte Barrierefunktion hinweist10,11.
    • Auch in einer Pilotstudie zum Effekt von Anthocyanen auf Colitis ulcerosa konnte ein Effekt auf die Darmbarriere gezeigt werden12. So konnte bei etwa 90 % der Patienten eine Antwort auf die Krankheitsaktivität und bei etwa 63 % der Patienten eine Remission gezeigt werden.
    • In einer Meta-Analyse wurde außerdem eine Reduktion von Entzündungsparametern (CRP, IL-6, TNF-alpha) bei der Einnahme von isolierten Anthocyanen festgestellt.

    Der Effekt dieser Polyphenole dürfte also vor allem auf der antientzündlichen und antioxidativen Wirkung beruhen.

  • Colostrum – Effekt auf den Darm

    Ein weiterer interessanter Inhaltsstoff ist Colostrum, die sogenannte Erstmilch. Es handelt sich dabei um die erste Milch, die nach der Geburt abgegeben wird. Im Gegensatz zur Folgemilch hat sie eine leicht andere Zusammensetzung, beispielsweise einen höheren Gehalt an IgG-Antikörpern.

    Das bovine Colostrum (Kuh-Colostrum) wurde in einigen Studien zur Behandlung des Leaky Gut Syndroms angewendet – mit positiven ersten Ergebnissen:

    • So wurde in einer Meta-Analyse eine Reduktion der Darmpermeabilität beobachtet – sowohl bei gesunden Sportlern als auch bei Patienten13.
    • Eine weitere Meta-Analyse betrachtete lediglich den Effekt bei Athleten in der Behandlung von sportinduziertem Leaky-Gut-Syndrom14. Hier konnte gezeigt werden, dass bovines Colostrum dabei helfen könnte, eine erhöhte Darmpermeabilität beim Athleten rückgängig zu machen.
  • 2’-Fucosyllactose – Humane Milch-Oligosaccharide für mehr Butyrat?

    2’-Fucosyllactose ist ein kleines, lösliches Trisaccharid, also ein Zuckerkomplex, das in der menschlichen Milch vorkommt. Es fällt unter den Begriff „Human Milk Oligosaccharide“ (HMO’s) und ist zusammen mit anderen Glykanen natürlich in der Muttermilch vorhanden. Es kommt ansonsten nicht natürlicherweise in der Ernährung von Erwachsenen vor und ist daher ein potenziell wertvolles Präbiotikum. (Für die Nahrungsergänzung wird übrigens eine mittels Fermentation hergestellte 2‘-Fucosyllactose verwendet, keinesfalls die natürliche Quelle der Muttermilch.)

    Obwohl ein Großteil der derzeitigen Evidenz noch auf präklinischen Studien oder Humanstudien für die Kinderheilkunde beruht, gibt es schon ein paar klinische Studien an Erwachsenen:

    • So zeigt sich in einer randomisierten kontrollierten Cross-Over Studie, dass eine Gabe von 2’-Fucosyllactose die Konzentration von Butyrat erhöhen konnte, sowohl bei normal- als auch bei übergewichtigen Männern15.
    • In einer Pilotstudie an Patienten mit Reizdarmsyndrom oder Colitis ulcerosa wurden diesen 2 Gramm 2’-Fucosyllactose für sechs Wochen verabreicht und anschließend unter anderem eine Verbesserung des Gesamtindex für die gastrointestinale Lebensqualität (GIQLI), der Anzahl der Bifidobakterien und Faecalibacterium prausnitzii (ein wichtiger Butyratproduzent) im Stuhl sowie der kurzkettigen Fettsäuren im Stuhl, einschließlich Butyrat, beobachtet16. All das ist assoziiert mit einer Verbesserung der Darmgesundheit.

Auch weitere Vitalstoffe wie Zink, die beruhigende Aloe Vera oder auch das bekannte Vitamin C haben potenzielle Effekte auf die Darmbarriere – wie auch eine Menge anderer Stoffe. Das große Problem, vor dem Du jetzt vermutlich stehst: Woher weiß ich, welchen Stoff und wie viel davon ich brauche? Und in welcher Kombination ergibt die Einnahme für mich Sinn? Wenn Du das gerade denkst, dann lies’ weiter!

Mikronährstoffe für den Darm – Praxistipps

Zuerst einmal vorab: Die Umsetzung der derzeitigen Evidenz findet schon viel statt, auch wenn noch nicht immer und überall das gesamte nötige Wissen vorhanden ist. Tendenziell handelt es sich bei allen genannten Wirkstoffen um gut verträgliche, nebenwirkungsarme Stoffe, dessen Einnahme in der Regel kein Problem darstellt – frage dennoch am besten Deinen Arzt oder Therapeuten vor einer Einnahme!

Und jetzt auch schon zu unseren Tipps:

  1. Wähle ein Komplexpräparat, also ein Produkt mit mehr als einem Wirkstoff, sodass Du am ehesten von Effekten profitierst! Es gibt einige potenzielle Wirkstoffe, die einen Effekt besonders beim einen, nicht jedoch beim anderen Krankheitsbild oder Symptom zeigen könnten – ein Komplexprodukt sichert Dich am besten ab.
  2. Achte als Basis auf eine gesunde, ballaststoffreiche Ernährung! Ballaststoffe sind beim Thema Darm wirklich das A und O.
  3. Verlasse Dich nicht auf Probiotika alleine! In diesem Beitrag haben wir Probiotika nicht angesprochen – aus gutem Grund. Probiotika sind lebende Bakterienstämme, die bei Einnahme die Darmflora anreichern sollen. Das Problem: Wenn die Darmflora nicht ausreichend mit Präbiotika (Ballaststoffen) gefüttert wird, können auch Probiotika langfristig keine Besserung herbeiführen, da sie, genau wie die Bakterien davor, keine optimalen Lebensbedingungen haben. Zudem siedeln sich neue Bakterien nicht einfach an; die Bedingungen müssen stimmen, und auch dies ist ein komplexes Thema. Wenn Du mehr zu Probiotika lesen möchtest, dann klicke gerne hier.
  4. Höre auf Dich selbst! Du kennst Deinen Körper und Deine Symptome am besten und merkst, wenn Du zusätzliche Unterstützung benötigst. Ein gesunder Darm ohne Probleme benötigt in der Regel keine Präparate. Ein beanspruchter Darm, der häufig durch Blähungen, Durchfall und Co. auffällt, wohl eher schon.

Zusammenfassung

Das Leaky Gut Syndrom ist zwar noch kein offiziell anerkannter Krankheitsbegriff, doch die Symptome und wissenschaftlichen Erkenntnisse zur gestörten Darmbarriere zeigen, dass es sich um ein ernstzunehmendes gesundheitliches Problem handelt. Die Darmbarriere spielt eine zentrale Rolle für unsere Gesundheit, insbesondere durch ihre Funktion als Schutzmechanismus gegen Entzündungen und pathogene Keime. Die wissenschaftliche Datenlage zeigt vielversprechende Ansätze, um Deine Darmbarriere zu stärken – von Aminosäuren wie L-Glutamin über Polyphenole, Colostrum bis hin zu präbiotischen Substanzen wie 2’-Fucosyllactose. Dennoch bleibt ein ganzheitlicher Ansatz entscheidend, der sowohl eine ballaststoffreiche Ernährung, einen bewussten Umgang mit Stress und potenziell eine gezielte Supplementierung umfasst. Höre auf Deinen Körper, beobachte, was Dir guttut, und setze gezielt Maßnahmen, um Deine Darmgesundheit nachhaltig zu fördern!

Referenzen (Englisch)

  1. Polak, K., Bergler-Czop, B., Szczepanek, M., Wojciechowska, K., Frątczak, A., & Kiss, N. (2021). Psoriasis and Gut Microbiome-Current State of Art. International journal of molecular sciences, 22(9), 4529. https://doi.org/10.3390/ijms22094529
  2. Di Vincenzo, F., Del Gaudio, A., Petito, V., Lopetuso, L. R., & Scaldaferri, F. (2024). Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Internal and emergency medicine, 19(2), 275–293. https://doi.org/10.1007/s11739-023-03374-w
  3. Kinashi, Y. & Hase, K. (2021). Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front. Immunol. https://doi.org/10.3389/fimmu.2021.673708
  4. Binienda, A., Twardowska, A., Makaro, A., & Salaga, M. (2020). Dietary Carbohydrates and Lipids in the Pathogenesis of Leaky Gut Syndrome: An Overview. International journal of molecular sciences, 21(21), 8368. https://doi.org/10.3390/ijms21218368
  5. Singh, V., Lee, G., Son, H., Koh, H., Kim, E. S., Unno, T., & Shin, J. H. (2023). Butyrate producers, “The Sentinel of Gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Frontiers in microbiology, 13, 1103836. https://doi.org/10.3389/fmicb.2022.1103836
  6. Zhou Q, Verne ML, Fields JZ, Lefante JJ, Basra S, Salameh H, et al. Randomised placebo-controlled trial of dietary glutamine supplements for postinfectious irritable bowel syndrome. Gut. 2019 Jun;68(6):996–1002.
  7. Pugh, J. N., Sage, S., Hutson, M., Doran, D. A., Fleming, S. C., Highton, J., Morton, J. P., & Close, G. L. (2017). Glutamine supplementation reduces markers of intestinal permeability during running in the heat in a dose-dependent manner. European journal of applied physiology, 117(12), 2569–2577. https://doi.org/10.1007/s00421-017-3744-4
  8. Kim, C. J., Kovacs-Nolan, J., Yang, C., Archbold, T., Fan, M. Z., & Mine, Y. (2009). L-cysteine supplementation attenuates local inflammation and restores gut homeostasis in a porcine model of colitis. Biochimica et biophysica acta, 1790(10), 1161–1169. https://doi.org/10.1016/j.bbagen.2009.05.018
  9. Hou, Y., Wang, L., Zhang, W., Yang, Z., Ding, B., Zhu, H., Liu, Y., Qiu, Y., Yin, Y., & Wu, G. (2012). Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino acids, 43(3), 1233–1242. https://doi.org/10.1007/s00726-011-1191-9
  10. Marino, M., Del Bo’, C., Martini, D., Perna, S., Porrini, M., Cherubini, A., Gargari, G., Meroño, T., Hidalgo-Liberona, N., Andres-Lacueva, C., Kroon, P. A., Guglielmetti, S., & Riso, P. (2024). A (poly)phenol-rich diet reduces serum and faecal calprotectin in older adults with increased intestinal permeability: the MaPLE randomised controlled trial. BMC geriatrics, 24(1), 707. https://doi.org/10.1186/s12877-024-05272-y
  11. Del Bo’, C., Bernardi, S., Cherubini, A., Porrini, M., Gargari, G., Hidalgo-Liberona, N., González-Domínguez, R., Zamora-Ros, R., Peron, G., Marino, M., Gigliotti, L., Winterbone, M. S., Kirkup, B., Kroon, P. A., Andres-Lacueva, C., Guglielmetti, S., & Riso, P. (2021). A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clinical nutrition (Edinburgh, Scotland), 40(5), 3006–3018. https://doi.org/10.1016/j.clnu.2020.12.014
  12. Biedermann, L., Mwinyi, J., Scharl, M., Frei, P., Zeitz, J., Kullak-Ublick, G. A., Vavricka, S. R., Fried, M., Weber, A., Humpf, H. U., Peschke, S., Jetter, A., Krammer, G., & Rogler, G. (2013). Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis – an open pilot study. Journal of Crohn’s & colitis, 7(4), 271–279. https://doi.org/10.1016/j.crohns.2012.07.010
  13. Hajihashemi, P., Haghighatdoost, F., Kassaian, N., Hoveida, L., Tamizifar, B., Nili, H., Rahim Khorasani, M., & Adibi, P. (2024). Bovine Colostrum in Increased Intestinal Permeability in Healthy Athletes and Patients: A Meta-Analysis of Randomized Clinical Trials. Digestive diseases and sciences, 69(4), 1345–1360. https://doi.org/10.1007/s10620-023-08219-2
  14. Dziewiecka, H., Buttar, H. S., Kasperska, A., Ostapiuk-Karolczuk, J., Domagalska, M., Cichoń, J., & Skarpańska-Stejnborn, A. (2022). A Systematic Review of the Influence of Bovine Colostrum Supplementation on Leaky Gut Syndrome in Athletes: Diagnostic Biomarkers and Future Directions. Nutrients, 14(12), 2512. https://doi.org/10.3390/nu14122512
  15. Canfora, E. E., Vliex, L. M. M., Wang, T., Nauta, A., Bouwman, F. G., Holst, J. J., Venema, K., Zoetendal, E. G., & Blaak, E. E. (2023). 2′-fucosyllactose alone or combined with resistant starch increases circulating short-chain fatty acids in lean men and men with prediabetes and obesity. Frontiers in nutrition, 10, 1200645. https://doi.org/10.3389/fnut.2023.1200645
  16. Ryan, J. J., Monteagudo-Mera, A., Contractor, N., & Gibson, G. R. (2021). Impact of 2′-Fucosyllactose on Gut Microbiota Composition in Adults with Chronic Gastrointestinal Conditions: Batch Culture Fermentation Model and Pilot Clinical Trial Findings. Nutrients, 13(3), 938. https://doi.org/10.3390/nu13030938

Weiterlesen

Ursachen und Auslöser der Darmdysbiose – welche Rolle spielt Sauerstoff?

Das Ökosystem unseres Verdauungssystems entscheidet maßgeblich über unsere Darm- und damit allgemeine Gesundheit. Eine entscheidende Rolle spielen die im Verdauungstrakt angesiedelten Mikroorganismen: ihre Zusammensetzung entscheidet über Gleichgewicht bzw. Ungleichgewicht im Darm. In diesem Beitrag beleuchten wir die möglichen Ursachen und Mechanismen einer Dysbiose (Ungleichgewicht) des Darmmikrobioms und die möglichen Folgen für unsere Gesundheit ausführlich.

Dieser Artikel kann ein echter Augenöffner sein – nach der Lektüre wirst du dich noch mehr um dein Mikrobiom kümmern wollen. 😊 Er ist allerdings auch nicht ganz einfach zu lesen, weil das Thema komplex ist und wir alles Wichtige zu dem Thema behandeln wollen. 

Hinweis: Wie immer sind die Informationen in unserem Artikel von uns selbst recherchiert und geschrieben – ohne Beteiligung von ChatGPT und Konsorten. Viel Spaß beim Lesen!

Die wichtigsten Erkenntnisse vorab

  • Ein Merkmal der Darmdysbiose ist das vermehrte Vorkommen solcher Bakterien, die zu den fakultativen Anaerobiern gehören. Sie überleben und wachsen auch in einem sauerstoffreichen Milieu. In günstigen Bedingungen können sie sich zu Krankheitserreger entwickeln.
  • Eine Darmdysbiose wird oft begleitet von einem Verlust der Bakterien Roseburia hominis, Faecalibacterium prausnitzii, der Gattung Butyricicoccus und anderen Bakterien aus der Klasse der Clostridien, welche zur Produktion der kurzkettigen Fettsäure Butyrat maßgeblich beitragen.
  • Die verringerte Produktion von Butyrat erhöht den Sauerstoffgehalt in den Epithelzellen des Dickdarms und im Darmlumen. Dadurch wird die Vermehrung von Proteobakterien, die zu den fakultativen Anaerobiern gehören, im Darm begünstigt – ein Teufelskreis setzt sich in Gang.
  • Ballaststoffe dienen den uns nützlichen Bakterien im Darm als Nahrungsquelle und sind für unsere Darmgesundheit förderlich. Bei einer schweren Darmdysbiose in Kombination mit Leaky Gut allerdings können Ballaststoffe Symptome verschlimmern. Die Einnahme von Ballaststoffen sollte hier erst im Zuge des Darmaufbaus erfolgen.
  • Die Erhöhung der Aktivität sogenannter PPAR-gamma Proteine und die Regulierung des Sauerstoffgehalts im Darm könnten ein Schlüssel zur Umkehrung einer Darmdysbiose sein.

Definition Darmdysbiose

Bevor wir die intestinale Dysbiose (Darmdysbiose) definieren können, bestimmen wir zunächst die Merkmale eines gesunden Darmmikrobioms.

Jeder gesunde Mensch verfügt über ein einzigartiges Darmmikrobiom – ähnlich unserem Fingerabdruck oder der Iris unserer Augen. Eine Verallgemeinerung, was ein gesundes Mikrobiom ausmacht, ist daher nicht ohne weiteres möglich. Wir wissen allerdings zwei Dinge:

  1. Menschen, die sich ballaststoffreich und vollwertig ernähren und einen gesunden Lebensstil pflegen, weisen mehr von bestimmten Bakterienarten auf als von anderen.
  2. Diese Menschen besitzen in der Regel auch eine höhere bakterielle Vielfalt in ihrem Darmmikrobiom als Menschen, die sich weniger ballaststoffreich und vollwertig ernähren.

Die Zusammensetzung und Verbreitung dieser Darmbakterien können somit Anhaltspunkte liefern, was ein gesundes Darmmikrobiom ausmacht. Schauen wir uns dies genauer an!

Bakterielle Sicht auf das Mikrobiom

Die vorherrschenden mikrobiellen Arten im Mikrobiom sind Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria und Verrucomicrobia. Firmicutes und Bacteroidetes machen zusammen etwa 90% dieser bakteriellen Zusammensetzung aus.

Innerhalb der Firmicutes-Gruppe wurden bereits über 200 verschiedene Gattungen identifiziert. Wichtige Vertreter sind Lactobacillus, Bacillus, Clostridium, Enterococcus und Ruminococcus. Die Clostridium-Gattungen machen 95% der Firmicutes-Population aus. Der Bacteroidetes-Stamm umfasst hauptsächlich Gattungen wie Bacteroides und Prevotella. Der Stamm der Actinobacteria ist weniger verbreitet und wird hauptsächlich durch die Gattung Bifidobacterium charakterisiert1.

Die Zusammensetzung der bakteriellen Vielfalt allein kann uns allerdings keinen eindeutigen Hinweis auf die Frage bieten, was ein gesundes Mikrobiom ausmacht. Einen weiteren Anhaltspunkt kann ein Blick auf die Funktionen, welche diese Bakterien übernehmen, liefern.

Funktionelle Sicht auf das Mikrobiom

Mit einem Blick auf die mikrobiellen Gene und welche Funktionen diese Gene erfüllen, können wir Vermutungen über die funktionelle Kapazität des Mikrobioms anstellen. Mehrere Mikrobenarten verfügen über ein ähnliches funktionelles Potenzial und verstoffwechseln und/oder produzieren die gleichen Nährstoffe.

Ein gesundes Mikrobiom verfügt über eine hohe bakterielle Vielfalt und eine hohe funktionelle Redundanz.

Mit anderen Worten: Du und ich können eine sehr unterschiedliche Zusammensetzung unserer Mikrobiome aufweisen im Hinblick auf die Bakterienarten, die in unserem Darm leben. Hinsichtlich der Funktionen, die diese Bakterien übernehmen, können sich unsere Mikrobiome aber sehr ähneln. Wir können somit festhalten, dass ein gesundes Mikrobiom sowohl eine hohe bakterielle Vielfältigkeit als auch eine hohe funktionelle Redundanz aufweist bzw. aufweisen sollte.

Der dysbiotische Zustand

In einem dysbiotischen Zustand sind die in einem gesunden Mikrobiom dominierenden Bakterienarten unterrepräsentiert. Gleichzeitig haben sich potenziell pathogene Arten vermehrt. Die diesen Zustand verursachenden Faktoren können dabei unterschiedlicher Natur sein. Das Ergebnis ist, dass die bakterielle Vielfalt im Allgemeinen reduziert ist.

Eine Darmdysbiose kann als Ungleichgewicht der verschiedenen Bakterien im Darm definiert werden.

Die Bakterien in unserem Darm leben in starker Abhängigkeit zueinander. Der Verlust einer Art im Darm bringt oft Veränderungen für andere Arten nach sich. Die Dysbiose wird dadurch schnell zu einem sich selbst verstärkenden Teufelskreis.

Diese Charakteristika einer Dysbiose treten häufig zusammen auf*:

  1. Verlust der uns nützlichen Bakterien(stämme)
  2. Überwucherung mit potenziell pathogenen Bakterien(stämmen)
  3. Gesamtverlust der bakteriellen Vielfalt

(* siehe Quelle #2).

Auf die unterschiedlichen Ursachen einer Dysbiose werden wir in diesem Artikel nicht weiter eingehen. Wir möchten unser Augenmerk auf einen Auslöser und Treiber der Dysbiose richten, da er auch bei der Behandlung der Dysbiose eine entscheidende Rolle spielen kann: Sauerstoff.

Sauerstoff als Treiber einer Darmdysbiose

Unser Körper und unsere körpereigenen Zellen benötigen Sauerstoff zum Überleben. Etwa 43% der Zellen, aus denen wir bestehen, sind menschlichen Ursprungs; die restlichen 57% sind Zellen von Mikroben. Viele Mikroben vertragen Sauerstoff allerdings gar nicht. Die meisten dieser Mikroben besiedeln den Dickdarm, dessen Milieu sich im gesunden Zustand durch Sauerstoffarmut auszeichnet.

Störungen des Darmmilieus können dazu führen, dass die Epithelzellen des Dickdarms (die Kolonozyten) Sauerstoff freisetzen. Der freigesetzte Sauerstoff kann Mikroben schaden, mit der Folge einer Darmdysbiose, eines zellulären Energiemangels und Entzündungen.

Ursprung der Zellen in unserem Organismus

Lass’ uns tiefer in die Frage abtauchen, wie Sauerstoff zum Hauptverursacher einer Darmdysbiose werden kann!

Das sauerstoffarme Ökosystem des Dickdarms

Die meisten Bakterien im Dickdarm sind sogenannte obligate Anaerobier. Diese Bakterien können nur in einer Umgebung wachsen und sich vermehren, die weitgehend frei von Sauerstoff ist. 

Einige dieser Bakterien werden heute als Probiotika der zweiten Generation angesehen, da sie den Abbau von Ballaststoffen unterstützen und kurzkettige Fettsäuren wie Butyrat produzieren.

In einem gesunden Darm gibt es auch eine kleine Anzahl von fakultativen Anaerobiern. Diese sind in der Lage, in Umgebungen sowohl mit als auch ohne Sauerstoff zu wachsen und sich zu vermehren.

Viele bekannte Krankheitserreger im Darm sind fakultative Anaerobier. Das sauerstoffarme Milieu im Darm und die hohe Präsenz von obligaten Anaerobiern halten sie jedoch im gesunden Zustand in Schach.

Darmhomöostase vs. Darmdysbiose Grafik

Die Energieproduktion der Darmzellen trägt zum sauerstoffarmen Milieu bei

Kurzkettige Fettsäuren dienen unseren Kolonozyten als Hauptenergiequelle. Butyrat liefert den Kolonozyten, die die Darmbarriere des Dickdarms bilden, tatsächlich etwa 70% der von diesen Zellen benötigten Energie3. (95-99% der von unseren Mikroben produzierten kurzkettigen Fettsäuren werden übrigens absorbiert; höchstens 5% werden mit dem Kot ausgeschieden4.)

Nach dem Eintritt in die Kolonozyten durchläuft Butyrat den Prozess der Beta-Oxidation in den Mitochondrien. Dieser Prozess stellt die Energie zur Verfügung, die die Darmzellen nutzen, um letztendlich Wasser aus dem Darmlumen zu absorbieren5. Bei diesem Prozess werden große Mengen an Sauerstoff verbraucht. Indem Kolonozyten den gesamten Sauerstoff auf diese Weise verbrauchen, tragen sie zur Aufrechterhaltung der „physiologischen Hypoxie“ (der physiologischen sauerstoffarmen Umgebung) im Darm bei.

Butyrat liefert den Kolonozyten Energie, mit der diese Sauerstoff verbrauchen und so den Darm zu einer sauerstoffarmen Umgebung machen.

Aufrechterhaltung der intestinalen Barrierefunktion

Forscher der University of Colorado konnten nachweisen, dass diese Verstoffwechselung von Butyrat für die Aufrechterhaltung der physiologischen Hypoxie im Dickdarm notwendig ist6. Sie fanden heraus, dass ein Hypoxie-induzierbarer Faktor (HIF) genanntes Protein als “Sauerstoffsensor” in der Zelle fungiert.

Wenn der Sauerstoffgehalt sinkt, aktiviert HIF eine bestimmte Genexpression (d.h. die Art und Weise, wie eine bestimmte genetische Information exprimiert wird und in Erscheinung tritt) der Darmgene, die für die Aufrechterhaltung der Darmbarriere wichtig ist. Umgekehrt führt eine Erhöhung des Sauerstoffgehalts zu einer Destabilisierung von HIF, und die Expression dieser schützenden Darmgene wird unterbrochen.

Darüber hinaus reguliert HIF die Aktivität von Genen, die für die Produktion von Beta-Defensin-1 (einem antimikrobiellen Peptid), die Muzinproduktion und die Entgiftung von Xenobiotika (z.B. Medikamenten) entscheidend sind7-9. Die Stabilisierung von HIF ist somit ein zentraler Mechanismus für die Aufrechterhaltung der intestinalen Barrierefunktion und hat eine krankheitspräventive Wirkung, insbesondere im Hinblick auf Colitis.

Stabilisierung des Hypoxie-induzierbaren Faktors (HIF) ist zentraler Mechanismus für die Aufrechterhaltung der intestinalen Barrierefunktion.

Antibiotika reduzieren Produktion von Butyrat

Nach diesen Erkenntnissen stellte sich die Forschergruppe die Frage, ob Antibiotika den physiologischen Hypoxiezustand beeinflussen, indem sie die kurzkettigen Fettsäuren produzierenden, obligaten Anaerobier dezimieren. Die Verabreichung eines Breitbandantibiotikums über nur drei Tage führte tatsächlich zu einem drastischen Abfall des Butyratspiegels. Infolgedessen stieg der Sauerstoffgehalt im Darm an und der Zustand der physiologischen Hypoxie verschwand. 

Auf zellulärer Ebene wurde der Sauerstoffsensor HIF nicht mehr stabilisiert, die Expression der Darmgene wurde rückläufig, was zu einem Verlust der Darmbarrierefunktion führte – auch bekannt als Leaky Gut (durchlässiger Darm).

Übrigens: Da der Mikrobiota der in der Studie getesteten Mäuse wichtige faserfermentierende obligate Anaerobier fehlten, konnte die Butyratproduktion durch die Gabe von Ballaststoffen nicht gesteigert werden. Wir können daraus schlussfolgern, dass Ballaststoffe daher nicht die beste Option zur Behandlung von Leaky Gut in Kombination mit einer schweren Darmdysbiose sind – zumindest nicht in der Anfangsphase.

Gemeinsame Marker der Darmdysbiose: geringe Häufigkeit von Butyratproduzenten und Zunahme fakultativer Anaerobier

Jüngste Fortschritte in der Sequenzierungstechnologie ermöglichen eine detaillierte Charakterisierung der Darmdysbiose bei einer Vielzahl von Erkrankungen. Obwohl die möglichen Variationen der Darmmikrobiota bei einer Dysbiose enorm sind, treten bestimmte Muster bei verschiedenen Krankheiten auf.

Eine wichtige Beobachtung von Litvak et al. weist auf ein häufiges dysbiotisches Muster hin: die anhaltende Verbreitung fakultativ anaerober Bakterien aus dem Stamm der Proteobacteria10. Proteobakterien, eine der fünf primären Bakteriengruppen im menschlichen Darm, umfassen verschiedene Gattungen wie Escherichia, Shigella, Salmonella, Helicobacter und andere. Diese Gattungen werden häufig als opportunistische Krankheitserreger eingestuft: In einem ausgewogenen mikrobiellen Ökosystem koexistieren diese Bakterien harmlos mit anderen Bakterienarten. Unter für sie günstigen Bedingungen jedoch vermehren sie sich und werden krankheitserregend.

Proteobakterien sind fakultative Anaerobier: wie wir oben bereits beschrieben haben, sind sie in der Lage, in sauerstoffreichen Umgebungen zu überleben. Ein entscheidender Faktor für die Vermehrung von Proteobakterien ist somit Sauerstoff10. Sauerstoff verschafft den Proteobakterien einen entscheidenden Vorteil gegenüber den obligat anaeroben Mikroben, deren Butyrat-produzierenden Gattungen wichtig für unsere Darmgesundheit sind.

Eine Zunahme von Proteobakterien geht in der Regel mit einer Abnahme der Butyrat-produzierenden Bakterien einher, was zwangsläufig zu einer Dysbiose führt.

Eine Zunahme der Proteobakterien geht in der Regel mit einer Abnahme von Butyrat-produzierenden Bakterien einher. Am Ende dieses Prozesses steht eine Dysbiose, die durch einen hohen Anteil an Proteobakterien und einen niedrigen Anteil an Butyratproduzenten gekennzeichnet ist. Dieses mikrobielle Ungleichgewicht wird mit mehreren chronischen Erkrankungen in Verbindung gebracht, darunter chronisch entzündliche Darmerkrankungen (CED), Reizdarmsyndrom, Darmkrebs, Divertikulitis, Histaminintoleranz, Typ-2-Diabetes und Adipositas1.

Bist du noch dabei? Großartig! Eine in diesem Abschnitt beschriebene Dysbiose-Signatur weist auf eine mögliche epitheliale Dysfunktion hin, die wir uns in den folgenden Abschnitten noch ein wenig genauer anschauen wollen.

Proteobakterien-induzierte Dysbiose in Abwesenheit von Antibiotika

Auch ohne Antibiotika können opportunistische Mitglieder des Stammes der Proteobakterien bestimmte Moleküle verwenden, um den Stoffwechsel der Kolonozyten zu „hacken“ und so eine Nährstoffumgebung im Darm zu schaffen, die derjenigen ähnelt, die durch Antibiotika entsteht.

Bestimmte Stämme der Protobakterien Escherichia coli und Salmonella können durch ihre Fähigkeit, sich an Darmepithelzellen anzuheften, eine Kaskade von Entzündungssignalen auslösen. Diese können zu einem unkontrollierten Zellwachstum in den Krypten, den schlauchförmigen Einsenkungen des Dickdarms führen11,12.

Dies führt zu einer erhöhten Sauerstoffverfügbarkeit an der Schleimhautoberfläche des Dickdarms, was die oben beschriebene Ausbreitung von krankheitserregenden Bakterien im Darmlumen ermöglicht.

Das dysbiotische Muster mit vermehrten Enterobacteriaceae ohne Antibiotikabehandlung führt ebenso zu einer Verminderung der Butyratproduzenten. Übrigens: In einem gesunden und physiologisch hypoxischen Darm machen Enterobacteriaceae normalerweise weniger als 0,1% der gesamten Mikrobiota aus13.

Auslöser einer Darmdysbiose:

  • Antibiotika
  • Stress
  • Lokale und systemische Infektionen (virale, bakterielle und Pilzinfektionen)
  • Krebsbehandlungen
  • Ballaststoffarme Ernährung
  • Lebensmittel-Emulgatoren
  • Süßstoffe

Verschiebung des Energiestoffwechsels in den Kolonozyten führt zu Darmdysbiose

Wie wir bereits festgehalten haben, führt die Verringerung der Butyratproduzenten zu einer Verringerung des Sauerstoffverbrauchs der Kolonozyten. Der höhere Sauerstoffgehalt löst eine Vermehrung der fakultativen Anaerobier aus.

Den Epithelzellen fehlt nun ihre bevorzugte Energiequelle (Butyrat). Auf der Suche nach neuer Energie beginnen sie, Glukose aus dem Blutstrom zu verstoffwechseln – für den Abbau der Glukose in den Kolonozyten wird wenig, bis kein Sauerstoff benötigt, wenn der Darm entzündet ist. Durch die Verstoffwechselung der Glucose wird vermehrt Laktat gebildet. Neben der erhöhten Laktatbildung setzt ein entzündeter Darm auch mehr Nitrat frei, das zusammen mit dem vorhandenen Sauerstoff in die Darmschleimhaut, schließlich in das Darmlumen gelangen.

Der Hauptschalter des Kolonozytenstoffwechsels

Bei einer intestinalen Dysbiose wird der Stoffwechsel vom Verbrennen von Fettsäuren wie Butyrat auf das Verbrennen von Glukose umgestellt. Diese Änderung im Stoffwechsel wird durch ein bestimmtes Gen gesteuert, das für eine Gruppe von Proteinen kodiert, die als PPAR-gamma (peroxisome proliferator-activated receptors) bekannt sind.

Wiederherstellung eines sauerstoffarmen Milieus im Darm könnte Schlüssel zur Umkehrung der intestinalen Dysbiose sein.

Im gesunden Zustand fermentieren die Bakterien in unserem Darm Ballaststoffe und produzieren dabei kurzkettige Fettsäuren wie Butyrat. Butyrat dient wie gesehen als Energiequelle für die Kolonozyten und erhöht auch die Expression und Aktivierung von PPAR-gamma. PPAR-gamma wiederum aktiviert Gene, die die Verwendung von Butyrat als Energiequelle erhöhen14. Wir sprechen von einer positiven Rückkopplungsschleife.

Bei der Dysbiose führt der Mangel an Butyrat-produzierenden Bakterien zu einer Herunterregulierung der Expression und Aktivität von PPAR-gamma. Dadurch erhöhen sich die Sauerstoff- und Nitratwerte im Darm, was wie erwähnt die Vermehrung pathogener Bakterien begünstigt.

Die gezielte Beeinflussung dieses Hauptschalters im Stoffwechsel der Kolonozyten (neben anderen damit verbundenen Strategien) könnte ein Schlüssel zur Wiederherstellung eines sauerstoffarmen Milieus im Darm sein, und damit zur Umkehrung der intestinalen Dysbiose maßgeblich beitragen.

Zusammenfassung

Geschafft! Du bist zum Ende unseres heutigen anspruchsvollen Artikels gelangt. Wir haben den Sauerstoffgehalt im Darm als einen der Hauptfaktoren der Darmdysbiose identifiziert. Übrigens: Wissenschaftliche Erkenntnisse zeigen, dass Antibiotika, eine ballaststoffarme Ernährung, Magen-Darm-Infektionen, Stress sowie der Verzehr großer Mengen stark verarbeiteter Lebensmittel die Entwicklung einer Darmdysbiose begünstigen. All dies kann den Sauerstoffgehalt im Darm erhöhen und somit die in diesem Artikel beschriebenen, die Darmdysbiose auslösenden Mechanismen begünstigen.

Wie geht es weiter? In einem Folgeartikel werden wir wissenschaftlich fundierte Ansätze zur Umkehrung der Darmdysbiose vorstellen. Diese beruhen auf der Wiederherstellung der physiologischen Hypoxie, d.h. einer sauerstoffarmen Umgebung in den Epithelzellen des distalen Darms.


Referenzen (Englisch)

  1. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, u. a. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 10. Januar 2019;7(1):14.
  2. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding of Dysbiosis in Disease in Human and Animal Models: Inflamm Bowel Dis. Mai 2016;22(5):1137–50.
  3. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, u. a. The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the Mammalian Colon. Cell Metab. Mai 2011;13(5):517–26.
  4. Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. September 2013;54(9):2325–40.
  5. Velázquez OC, Lederer HM, Rombeau JL. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol. 1997;427:123–34.
  6. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, u. a. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe. Mai 2015;17(5):662–71.
  7. Kelly CJ, Glover LE, Campbell EL, Kominsky DJ, Ehrentraut SF, Bowers BE, u. a. Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunol. November 2013;6(6):1110–8.
  8. Wartenberg M, Ling FC, Müschen M, Klein F, Acker H, Gassmann M, u. a. Regulation of the multidrug resistance transporter P‐glycoprotein in multicellular tumor spheroids by hypoxia‐inducible factor‐1 and reactive oxygen species. FASEB J. März 2003;17(3):1–22.
  9. Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB, Colgan SP. Selective induction of mucin‐3 by hypoxia in intestinal epithelia. J Cell Biochem. 15. Dezember 2006;99(6):1616–27.
  10. Litvak Y, Byndloss MX, Tsolis RM, Bäumler AJ. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol. Oktober 2017;39:1–6.
  11. Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, u. a. Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. Cell Host Microbe. April 2016;19(4):443–54.
  12. Rivera-Chávez F, Lopez CA, Bäumler AJ. Oxygen as a driver of gut dysbiosis. Free Radic Biol Med. April 2017;105:93–101.
  13. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, u. a. Diversity of the Human Intestinal Microbial Flora. Science. 10. Juni 2005;308(5728):1635–8.
  14. Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL, u. a. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science. 11. August 2017;357(6351):570–5.

Weiterlesen

PHGG – Ein Ballaststoff, der Verdauungsbeschwerden schon bei geringer Dosierung verbessert

Wenn bei dir das Reizdarmsyndrom oder SIBO (Dünndarmfehlbesiedlung) diagnostiziert wurde, hast du bei der Suche nach Linderung deiner Symptome wahrscheinlich schon von PHGG gehört.

Für manche ist PHGG so etwas wie der heilige Gral der Ballaststoffergänzungen. Aber kann es diesem Hype wirklich gerecht werden? Im heutigen Artikel erfährst du, wie PHGG sich von anderen Ballaststoffen unterscheidet – und ob es Belege für die in den sozialen Medien aufgestellten Behauptungen gibt! (Unseren letzten Artikel verpasst? Lies nach, ob du bei Weizenallergie nur noch Sauerteigbrot essen solltest.)

Hinweis: Wie immer sind die Informationen in unserem Artikel von uns selbst recherchiert und geschrieben – ohne Beteiligung von ChatGPT und Konsorten. Viel Spaß beim Lesen!

Wichtigste Erkenntnisse

  • Kaum ein anderer Ballaststoff wurde so oft bezüglich der Linderung der Symptome bei Reizdarm untersucht wie PHGG
  • Neue längerfristige Studie (über 6 Monate): positive Auswirkungen von PHGG auf die Stuhlkonsistenz und die Entzündungen bei Reizdarmsyndrom, Colitis ulcerosa und Morbus Crohn
  • Durch Produktion kurzkettiger Fettsäuren wie Butyrat können lösliche Ballaststoffe wie PHGG die Mastzellenaktivierung und die anschließende Histaminfreisetzung positiv (hier: hemmend) beeinflussen

Was ist PHGG?

Partiell-hydrolysiertes Guarkernmehl (PHGG) ist ein wasserlöslicher Ballaststoff, der aus der Guarbohne gewonnen wird, die hauptsächlich in Pakistan und Indien angebaut wird. Guarkernmehl wird häufig als Verdickungsmittel und Stabilisator in der Lebensmittelindustrie verwendet (Du hast es bestimmt schon mal auf einem Lebensmitteletikett oder eine Zutatenliste gesehen). Guarkernmehl verfügt über gute präbiotische Eigenschaften; es ist aber leider auch als Histaminliberator bekannt und somit für Menschen mit Histaminintoleranz nicht geeignet.

PHGG wird durch enzymatische Hydrolyse (Spaltung) von Guarkernmehl gewonnen. Obwohl die ursprüngliche Verwandtschaft von PHHG und Guarkernmehl es nicht unbedingt vermuten lässt, hat PHGG in seinen chemischen und sogar in einigen physiologischen Eigenschaften wenig mit Guarkernmehl gemeinsam. Schau’ dir dazu diese Fakten an:

  • Guarkernmehl besitzt eine 250 fache höhere Viskosität als PHGG und ist damit zähflüssig; es geliert geradezu und kann im schlimmsten Fall zur Verstopfung der Speiseröhre führen. PHGG hingegen löst sich leicht und fast vollständig in Wasser auf und kann so sehr gut eingenommen werden.
  • PHGG kann die Symptome des Reizdarmsyndroms lindern – dafür gibt es eine Reihe wissenschaftlicher Belege. Für Guarkernmehl gibt es hingegen keine Belege für eine derartige Wirkung. (Lies hier, ob Probiotika nützlich sind!)
  • Und wie sieht es mit der Histaminintoleranz aus? Darauf wollen wir in der folgenden Box ein wenig genauer eingehen.

PHGG und Histaminintoleranz/ Mastzellaktivierungssyndrom

Wenn bei dir eine chronisch-entzündliche Darmerkrankung diagnostiziert worden, ist dir wahrscheinlich geraten wurde, Guarkernmehl zu meiden. Wie wir bereits erwähnt haben, sollte PHGG aus guten Gründen nicht mit seinem Substrat, dem Guarkernmehl, verglichen werden.

Tatsächlich hat sich gezeigt, dass Störungen der Mastzellenaktivierung in engem Zusammenhang mit einem niedrigen Ballaststoffkonsum stehen15. Durch direkte Interaktionen mit dem Immunsystem und die Produktion kurzkettiger Fettsäuren können lösliche Ballaststoffe wie PHGG die Mastzellenaktivierung und die anschließende Histaminfreisetzung positiv (hier: hemmend) beeinflussen.

Ein Großteil der positiven Wirkungen wird dabei Butyrat zugeschrieben, das durch Fermentation der präbiotischen Ballaststoffe im Dickdarm entsteht16. Um eine schnellere und direktere Wirkung zu erzielen, könnte eine Supplementierung mit Butyrat mit gezielter und langsamer Freisetzung im Dünn- und Dickdarm eine Überlegung wert sein.

Symptomlinderung bei Reizdarm: PHGG im Vergleich zu anderen Ballaststoffen

Wenn es um die Verringerung von Symptomen beim Reizdarmsyndrom geht, sind nur wenige lösliche Ballaststoffe so gründlich getestet worden wie PHGG. In drei randomisiert-kontrollierten Studien und mehreren weiteren klinischen Studien zeigte PHGG nachweislich positive Auswirkungen auf die Symptome des Reizdarmsyndroms, die Stuhlkonsistenz, die Transitzeit und die Zusammensetzung des Darmmikrobioms. 

Schauen wir im Folgenden auf vier weitere FODMAP-arme Ballaststoffe, die häufig bei der Behandlung des Reizdarmsyndroms (RDS) eingesetzt werden:

  • Akazienfaser

    Akazienfaser ist ein weiterer löslicher Ballaststoff, von dem bekannt ist, dass er für RDS-Patienten gut verträglich ist. Obwohl Akazienfaser nachweislich die Verstopfung bei RDS-C-Patienten verbessert1, hat sich nicht gezeigt, dass er die allgemeinen Symptome des Reizdarmsyndroms und anderer RDS-Subtypen verbessert.

  • Resistente Stärke

    Resistente Stärke Typ 2 ist in geringer Dosierung als FODMAP-arm zertifiziert und kann von RDS-Patienten ohne Bedenken verzehrt werden. Obwohl sie sich positiv auf das Darmmikrobiom und den Histamingehalt auswirkt2,3, gibt es keine Belege dafür, dass sie die Symptome des Reizdarmsyndroms verringern kann.
  • Resistentes Dextrin

    Resistentes Dextrin ist ein weiterer Ballaststoff, der meist aus gentechnikfreiem Mais hergestellt wird. Da resistentes Dextrin langsam fermentiert, ist die Gasbildung gering, und Menschen mit Reizdarmsyndrom können normalerweise relativ große Mengen davon verzehren, ohne dass sich die Symptome verschlimmern. Obwohl auch für diesen Ballaststoff ein positiver Einfluss auf die Zusammensetzung des Mikrobioms und den Stoffwechsel nachgewiesen wurde4,5, gibt es keine Belege in der Fachliteratur, dass resistentes Dextrin die Symptome des Reizdarmsyndroms positiv beeinflussen kann.
  • Flohsamen

    Flohsamenschalen sind der einzige hier aufgeführte Ballaststoff, der nach der verfügbaren Literatur mit PHGG vergleichbar ist, wenn es um die Verringerung der Symptome bei RDS-Patienten geht6. Der Nachteil? Im Vergleich zu PHGG können Flohsamenschalen recht schnell gelieren und sind daher für den regelmäßigen Verzehr für viele Menschen schlechter geeignet. PHGG hingegen löst sich vollständig in Wasser auf und kann fast jedem Getränk zugesetzt werden.

Ballaststoffe bei entzündlichen Darmerkrankungen – Freund oder Feind?

Ballaststoffe waren lange Zeit stigmatisiert und wurden bei der diätetischen Behandlung von entzündlichen Darmerkrankungen eher als Feind denn als Freund betrachtet. (Wieso Präbiotika wichtig sind, haben wir in einem früheren Beitrag bereits erläutert.) Es ist bekannt, dass eine elementare Diät (ohne Ballaststoffe) selbst bei schweren Fällen von Morbus Crohn und Colitis ulcerosa zur Remission führen kann8. Die Kehrseite dieser Diäten ist jedoch, dass die Verlagerung von Bakterien durch die Darmbarriere zunimmt9. Dies ist wahrscheinlich auf einen Verlust der Barrierefunktion zurückzuführen10.

Eine Studie ergab, dass die Zugabe von Ballaststoffen zu dieser Elementardiät die genannte Verlagerung tatsächlich verhindern konnte9. Neue Forschungsergebnisse und aktuelle Leitlinien für die langfristige diätetische Behandlung von CED befürworten auch die Verwendung von Ballaststoffen für diese Krankheitsgruppe, wobei der Schwerpunkt auf löslichen Ballaststoffen liegt11,12. Es ist jedoch etwas unklar, welche Art von löslichen Ballaststoffen und welche Dosierungen den optimalen Nutzen bringen.

Was sagt die S3-Leitlinie zu Ballaststoffen?

In der S3-Leitlinie für das Reizdarmsyndrom (die von den meisten Ärzten in Deutschland verwendet wird) wird empfohlen, lösliche Ballaststoffe in die Ernährung einzubeziehen7. Von den oben genannten Ballaststoffen stehen nur PHGG und Flohsamenschalen auf der Positivliste der Leitlinie; für die anderen genannten Ballaststoffe gibt es keine Belege für positive Effekte auf die Symptomlinderung bei Reizdarmsyndrom.

PHGG als unterstützende Therapie bei CED

Kürzlich wurden die längerfristigen Auswirkungen (6 Monate) der gleichzeitigen Verabreichung von PHGG und medizinischer Standardbehandlung bei Reizdarmsyndrom und CED untersucht. Da die meisten Studien zu PHGG (und anderen Ballaststoffen) nur über einen Zeitraum von 1 bis 3 Monaten durchgeführt wurden, ist diese Studie einmalig.

Die aktuelle Studie konnte die Sicherheit einer langfristigen PHGG-Supplementierung bei Reizdarmsyndrom, Colitis ulcerosa und Morbus Crohn bestätigen. Es wurden positive Auswirkungen auf die Stuhlkonsistenz und die Entzündung festgestellt13. Um die Ergebnisse der Autoren zu zitieren:

“Die Behandlung mit PHGG führte bei Patienten mit Reizdarmsyndrom zu signifikanten Veränderungen, einschließlich einer Zunahme der Häufigkeit von kurzkettigen Fettsäuren produzierenden Bakterien, einer signifikanten Abnahme der Häufigkeit von Bacteroides und einer Normalisierung des Stuhls auf der Bristol-Skala. Bei Patienten mit UC wurden eine nicht signifikante Normalisierung des weichen Stuhls und ein Rückgang des fäkalen Calprotectins beobachtet. Unerwünschte Ereignisse wurden in keiner der Gruppen beobachtet.”

Ballaststoffe, die blähen? Nein, danke!

Der Verzehr von löslichen Ballaststoffen ist bekanntlich gut für dein Darmmikrobiom, da sie nützliche Mikroben (Darmbakterien) ernähren. Werden die Ballaststoffe im Darm von den Bakterien fermentiert (verdaut), kommt es unweigerlich zu Gasbildung. Dies kann zunächst zu unerwünschten Blähungen und Flatulenzen führen. Die Menge der entstehenden Gase hängt stark von der Struktur der Ballaststoffe, ihrem Molekulargewicht und der Zusammensetzung des Mikrobioms ab. Die gute Nachricht: Diese Symptome klingen in der Regel ab, wenn du Ballaststoffe anfänglich niedrig dosierst und die Dosierung über einige Wochen langsam erhöhst.

Gesundheitlichen Vorteile von Butyrat

  • dient als Energiequelle für deine Darmzellen
  • kann Entzündungen herunterregulieren
  • kann das Immunsystem regulieren
  • verfügt über Antitumoreigenschaften 

Wie oben bereits beschrieben ist ein Produkt der Fermentation der Ballaststoffe die kurzkettige Fettsäure Butyrat. Kurzkettige Fettsäuren (SCFA, aus dem englischen Short-Chained Fatty Acids) sind Signalmoleküle und dienen als Energiequelle für deine Darmzellen. Übrigens: Gasproduktion und SCFA-Produktion gehen meist Hand in Hand. Wenn keine Gasproduktion vorhanden ist, ist die SCFA-Produktion letztlich gering.

Eine Studie, die die Gas- und SCFA-Produktion verschiedener Ballaststoffe untersuchte, fand heraus, dass PHGG im „Sweet Spot“ liegt – es erzeugt eine mittlere Menge an Gas und produziert reichlich von der kurzkettigen Fettsäure Butyrat14.

Die oben erwähnte Studie ergab, dass PHGG im Vergleich zu Zuckerrohrbagasse und Akazienfasern eine günstigere Butyratproduktion aufweist, wenn auch eine etwas höhere Gasproduktion. Mit anderen Worten: Wenn du einen nachweislich wirksamen Ballaststoff mit (immer noch) geringer Gasproduktion suchst, ist PHGG dein bester Freund.

Dosierung von PHGG und Dauer der Einnahme

Wie bei allen Ballaststoffen ist es ratsam, langsam mit der Einnahmemenge zu beginnen. Typischerweise bedeutet dies, mit 5 Gramm PHGG zu beginnen – bereits mit 5 Gramm pro Tag wurden positive Auswirkungen auf die Stuhlkonsistenz und RDS-Symptome festgestellt17. (Die Einnahme erfolgt am besten morgens; bei anfänglichen Gewöhnungseffekte kann PHGG auch abends eingenommen werden, damit es über Nacht fermentiert werden kann.)

Der Nutzen von PHGG scheint bei höheren Dosierungen zuzunehmen. Die meisten Menschen vertragen PHGG von Anfang an sehr gut. Solltest du am Anfang sensibel auf die Einnahme reagieren, kannst du mit 2,5 Gramm pro Tag anfangen (oder du verteilst die 5 Gramm auf 2,5 Gramm morgens und 2,5 Gramm abends). Auf diese Weise sollte dein Mikrobiom in der Lage sein, sich an das Plus von Ballaststoffen zu gewöhnen.

Im Laufe der Einnahme kannst du zu den 5 Gramm am Morgen weitere 5 Gramm am Abend und schließlich weitere 5 Gramm am Mittag hinzunehmen (oder 7,5 Gramm am Morgen und 7,5 Gramm am Abend). 15 Gramm PHGG pro Tag können vom Darmmikrobiom gesunder Menschen nämlich vollständig verstoffwechselt werden. Da der Nutzen von Ballaststoffen (insbesondere die Produktion kurzkettiger Fettsäuren) mit deren Einnahmemenge zunimmt, sind diese 15 Gramm PHGG pro Tag ein theoretischer Richtwert, bei dem der Nutzen der Einnahme optimiert wird18. Die meisten Menschen werden auch mehr als 15 Gramm PHGG am Tag ohne Probleme vertragen.

Dies sind die Dosierungsempfehlungen für Mibiota EASYibs bei Verstopfung und bei Durchfall und gemischtem Stuhlverhalten
PHGG-Dosierungsempfehlung für die ersten Tage.

Nach etwa 3 Wochen einer Dosierung von 15 Gramm am Tag wird empfohlen, die tägliche Einnahme auf eine Erhaltungsdosis von 5-10 Gramm zu reduzieren. Diese solltest du mindestens 6 Monate lang beibehalten, da sich die positiven Auswirkungen auf dein Darmmikrobiom und deine Darmbarriere im Laufe der Zeit summieren. 

PHGG – ein unsichtbarer Ballaststoff mit sichtbaren Vorteilen

Lösliche Ballaststoffe sind eine großartige Ergänzung für deine tägliche Ernährung. Neben der Ankurbelung der Produktion kurzkettiger Fettsäuren und der Verbesserung der Zusammensetzung deines Darmmikrobioms, verbessern Ballaststoffe wie PHGG und Flohsamenschalen nachweislich die allgemeinen Symptome aller RDS-Subtypen. Ein weiterer Vorteil von PHGG ist, dass es geruchlos ist, sich vollständig in Wasser auflöst und so gut wie keinen Geschmack hat. Da es hitzebeständig ist, kannst du es sogar in den morgendlichen Kaffee oder Tee geben.

Referenzen (Englisch)

  1. JanssenDuijghuijsen L, Van Den Belt M, Rijnaarts I, Vos P, Guillemet D, Witteman B, et al. Acacia fiber or probiotic supplements to relieve gastrointestinal complaints in patients with constipation-predominant IBS: a 4-week randomized double-blinded placebo-controlled intervention trial. Eur J Nutr [Internet]. 2024 Apr 23 [cited 2024 Jun 1]; Available from: https://link.springer.com/10.1007/s00394-024-03398-8
  2. Bush JR, Baisley J, Harding SV, Alfa MJ. Consumption of SolnulTM Resistant Potato Starch Produces a Prebiotic Effect in a Randomized, Placebo-Controlled Clinical Trial. Nutrients. 2023 Mar 24;15(7):1582.
  3. Bush JR, Han J, Deehan EC, Harding SV, Maiya M, Baisley J, et al. Resistant potato starch supplementation reduces serum histamine levels in healthy adults with links to attenuated intestinal permeability. J Funct Foods. 2023 Sep;108:105740.
  4. Thirion F, Da Silva K, Plaza Oñate F, Alvarez A, Thabuis C, Pons N, et al. Diet Supplementation with NUTRIOSE, a Resistant Dextrin, Increases the Abundance of Parabacteroides distasonis in the Human Gut. Mol Nutr Food Res. 2022 Jun;66(11):2101091.
  5. Hobden MR, Commane DM, Guérin-Deremaux L, Wils D, Thabuis C, Martin-Morales A, et al. Impact of dietary supplementation with resistant dextrin (NUTRIOSE®) on satiety, glycaemia, and related endpoints, in healthy adults. Eur J Nutr. 2021 Dec;60(8):4635–43.
  6. Chouinard LE. The Role of Psyllium Fibre Supplementation: In Treating Irritable Bowel Syndrome. Can J Diet Pract Res. 2011 Mar;72(1):e107–14.
  7. Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, et al. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. Z Für Gastroenterol. 2021 Dec;59(12):1323–415.
  8. Damas OM, Garces L, Abreu MT. Diet as Adjunctive Treatment for Inflammatory Bowel Disease: Review and Update of the Latest Literature. Curr Treat Options Gastroenterol. 2019 Jun;17(2):313–25.
  9. Xu D, Lu Q, Deitch EA. Elemental Diet‐Induced Bacterial Translocation Associated With Systemic and Intestinal Immune Suppression. J Parenter Enter Nutr. 1998 Jan;22(1):37–41.
  10. Deitch EA, Xu D, Naruhn MB, Deitch DC, Lu Q, Marino AA. Elemental Diet and IV-TPN-Induced Bacterial Translocation Is Associated with Loss of Intestinal Mucosal Barrier Function Against Bacteria: Ann Surg. 1995 Mar;221(3):299–307.
  11. Loy L, Petronio L, Marcozzi G, Bezzio C, Armuzzi A. Dietary Fiber in Inflammatory Bowel Disease: Are We Ready to Change the Paradigm? Nutrients. 2024 Apr 10;16(8):1108.
  12. Hashash JG, Elkins J, Lewis JD, Binion DG. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients With Inflammatory Bowel Disease: Expert Review. Gastroenterology. 2024 Mar;166(3):521–32.
  13. Watanabe H, Inoue T, Miyamoto L, Ono Y, Matsumoto K, Takeda M, et al. Changes in intestinal microbiota and biochemical parameters in patients with inflammatory bowel disease and irritable bowel syndrome induced by the prolonged addition of soluble fibers to usual drug therapy. J Med Invest. 2024;71(1.2):121–8.
  14. So D, Yao CK, Gill PA, Pillai N, Gibson PR, Muir JG. Screening dietary fibres for fermentation characteristics and metabolic profiles using a rapid in vitro approach: implications for irritable bowel syndrome. Br J Nutr. 2021 Jul 28;126(2):208–18.
  15. McKenzie C, Tan J, Macia L, Mackay CR. The nutrition‐gut microbiome‐physiology axis and allergic diseases. Immunol Rev. 2017 Jul;278(1):277–95.
  16. Folkerts J, Stadhouders R, Redegeld FA, Tam SY, Hendriks RW, Galli SJ, et al. Effect of Dietary Fiber and Metabolites on Mast Cell Activation and Mast Cell-Associated Diseases. Front Immunol. 2018;9:1067.
  17. Parisi G, Bottona E, Carrara M, Cardin F, Faedo A, Goldin D, et al. Treatment Effects of Partially Hydrolyzed Guar Gum on Symptoms and Quality of Life of Patients with Irritable Bowel Syndrome. A Multicenter Randomized Open Trial. Dig Dis Sci. 2005 Jun;50(6):1107–12.
  18. Reider SJ, Moosmang S, Tragust J, Trgovec-Greif L, Tragust S, Perschy L, et al. Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota—Results from the PAGODA Trial. Nutrients. 2020 Apr 28;12(5):1257.

Weiterlesen

Glutensensitivität und Weizenallergie – nur noch Sauerteig?

Nachdem wir in unserem letzten Blogbeitrag auf die Bedeutung der Verdauungsenzyme eingegangen sind, widmen wir uns in diesem Beitrag einem weiteren wichtigen Thema zur Verdauung bei funktionellen Darmerkrankungen.

Glutensensitivität, die nach dem Verzehr des Eiweißes Gluten Verdauungssymptome auslöst und nicht durch Zöliakie ausgelöst wird, betrifft rund 15% der Gesamtbevölkerung. Die Störung wurde erstmals 1980 beschrieben und hat dank neuer Forschungsergebnisse in den letzten Jahren mehr Aufmerksamkeit und Anerkennung gewonnen. In diesem Blogbeitrag lernst Du die Hintergründe der Störung, was der Stand der Wissenschaft zu einer möglichen Behandlung gerade sagt, und praktische Tipps für Deinem Alltag.

Hinweis: Wie immer sind die Informationen in unserem Artikel von uns selbst recherchiert und geschrieben – ohne Beteiligung von ChatGPT und Konsorten. Viel Spaß beim Lesen!

Wichtigste Erkenntnisse vorab

  • Die Nicht-Zöliakie-Glutensensitivität (NCGS) kann durch FODMAPs und Proteine in Getreide ausgelöst werden.
  • Amylase-Trypsin-Inhibitoren (ATIs) sind die prominentesten Auslöser von NCGS und starke Aktivatoren des angeborenen Immunsystems.
  • Glutenfreies Getreide, Sauerteig und alte Weizensorten wie Einkorn weisen derzeit das größte Potential auf, die Menge an ATIs in der Ernährung zu reduzieren oder abzubauen.
  • Der Zuckeralkohol Mannitol (ein FODMAP) kann durch Sauerteiggärung begünstigt werden.
  • ATI-abbauende Probiotika könnten eine zukünftige Therapieoption für Betroffene von NCGS sein.

Zöliakie, Weizenallergie und Glutensensitivität – gibt es einen Unterschied?

Glutensensitivität oder genauer gesagt die Nicht-Zöliakie-Glutensensitivität (NCGS) ist, wie ihr Name andeutet, getrennt von Zöliakie zu betrachten. Zöliakie ist durch eine Schädigung der Dünndarmzellen, spezifische Antikörper gegen das eigene Gewebe und häufig begleitende genetische Veranlagung gekennzeichnet. NCGS sollte auch getrennt von der Weizenallergie betrachtet werden, bei der es sich um eine unerwünschte immunologische Reaktion auf das Weizenprotein Gluten handelt.

NCGS lässt sich somit am besten als Zustand beschreiben, der durch intestinale und extraintestinale Symptome im Zusammenhang mit dem Verzehr von glutenhaltigen Lebensmitteln bei Personen gekennzeichnet ist, die weder von Zöliakie noch von einer Weizenallergie betroffen sind.

Klinische Symptome von NCGS und Auslöser der Symptome

Nach dem Verzehr von glutenhaltigen Lebensmitteln zeigen Personen mit NCGS klassischerweise Reizdarm-ähnliche Symptome wie Blähungen, Störungen der Stuhlgewohnheiten (Durchfall oder Verstopfung), Bauchschmerzen oder extraintestinale Symptome wie Gehirnnebel, Kopfschmerzen, Müdigkeit, Gelenk- und Muskelschmerzen, Hautausschläge, Depressionen oder/und Anämie. Das häufigste extraintestinale Symptom scheint dabei Müdigkeit zu sein. Die Symptome treten in der Regel innerhalb von Stunden nach dem Konsum glutenhaltiger Nahrungsmittel auf1.

Viele glutenhaltige Lebensmittel enthalten einen hohen Anteil an FODMAPs (schnell fermentierbare Kohlenhydrate und Zuckeralkohole) und sogenannten Amylase- und Trypsin-Inhibitoren. Diese Proteine werden neben Gluten als Auslöser bei NCGS vermutet2.

Wie kannst Du NCGS diagnostizieren (lassen)?

Um NCGS zu diagnostizieren, werden zuerst Zöliakie und eine Weizenallergie durch Blutuntersuchung und/oder Biopsie ausgeschlossen. Danach kann die Diagnose NCGS anhand eines Rückgangs der Symptome nach einer glutenfreien Diät (über 4-6 Wochen) und des Wiederauftretens der Symptome nach einer glutenhaltigen Ernährung (über 1-3 Wochen) gestellt werden.

Mibiota FODMAP Ratgeber

Low-FODMAP Ratgeber bei Reizdarm und SIBO

Praktisch für’s Smartphone – ideal für Deinen nächsten Einkauf!

Jetzt herunterladen!

Vor Beginn der glutenfreien Diät sollten bis zu drei Hauptsymptome mit einem Schweregrad zwischen 1 und 10 notiert werden. Ein erstes Anzeichen für NCGS ist die Verringerung der drei Hauptsymptome um mindestens 30%, gemessen durch Aufzeichnung des Symptomschweregrads einmal pro Woche3. Danach sollte eine Glutenprobe durchgeführt werden: Die betroffene Person verzehrt dabei zwei identisch aussehende Lebensmittel, wobei eines Gluten enthält während das andere ohne Gluten als Placebo fungiert. Beide Lebensmittel werden mindestens eine Woche lang verzehrt, gefolgt von einer glutenfreien Woche. Ein erneutes Auftreten der Symptome in der glutenfreien Woche bestätigt dann die Diagnose NCGS3.

Für Einzelheiten zu dieser Glutenprobe verweisen wir auf Studie #3 in unseren Referenzen.

Diagnose NCGS – welche Behandlung?

Die meisten Ärzte empfehlen Patienten, die an NCGS leiden, eine glutenfreie Diät. Zwei Schwierigkeiten stehen mit dieser Behandlung allerdings in Verbindung: Durch die glutenfreie Diät nehmen die Patienten jedoch auch eine geringere Vielfalt an Lebensmitteln zu sich. Zudem kaufen sie teurere glutenfreie Produkte, die oft nicht den gleichen Nährwert oder die gleiche sensorische Qualität aufweisen wie einige der glutenhaltigen Lebensmittel.

Eine glutenfreie Diät allein wird in den meisten Fällen allerdings nicht ausreichen. Ein ganzheitlicher Ansatz zur Behandlung von NCGS schließt auch das Testen und die Umkehrung jeglicher Anzeichen einer Darmdysbiose, von Leaky Gut und einer Darmentzündung ein. (Lies’ in diesem Beitrag, was Leaky Gut genau ist und wie es behandelt werden kann).

Amylase an der Reifung von Bananen beteiligt

Bild 1: Amylasen sind am Reifungsprozess von Früchten beteiligt. 

Glutensensitivität und die Rolle von ATI-Proteinen

In jüngerer Zeit wurden zwei spezifische Fraktionen von Weizenproteinen mit NCGS in Verbindung gebracht: Amylase-Trypsin-Inhibitoren (ATIs) und Weizenkeim-Agglutinin (WGA)2. Wir haben ATIs bereits kurz erwähnt und werden uns nun mehr diesen Weizenproteinen widmen.

ATIs sind ein Teil des natürlichen Abwehrmechanismus von Pflanzen. Sie kommen in verschiedenen Formen und in unterschiedlichen Mengen in Weizensorten vor. ATIs verfügen über ein unterschiedliches Potenzial, Immunreaktionen zu aktivieren, Enzyme zu hemmen und letztlich Darmentzündungen zu verursachen1.

Als Enzyminhibitoren hemmen ATIs die Proteine Alpha-Amylase (wichtig für den Stärkeabbau) und Trypsin (wichtig für den Proteinabbau)2. Dadurch können sowohl Stärke als auch Proteine unverdaut in die unteren Teile des Dünn- und Dickdarms gelangen, wo sie von den dort ansässigen Bakterien fermentiert werden. Dieser Fermentationsprozess kann sowohl eine Dysbiose (SIBO und/oder Kolon-Dysbiose) als auch Reizdarm-ähnliche Symptome verursachen. (Leidest Du unter SIBO? Beachte den Zusammenhang von SIBO und Magensäure!)

Wie hängen ATIs, Gluten und Zöliakie zusammen?

Sowohl Studien an NCGS-Patienten als auch Tierstudien deuten darauf hin, dass ATIs aus Weizen ein starker Auslöser von Entzündungen sind, indem sie sowohl adaptive als auch angeborene Immunreaktionen aktivieren4-6. Obwohl im Zusammenhang mit Weizen oftmals nur Gluten als Auslöser von Symptomen im Fokus steht, deutet eine neuere Studie an Mäusen darauf hin, dass die gleichzeitige Aufnahme von ATIs und Gluten Zöliakie auslösen könnte7. Einer anderen Studie zufolge könnten ATIs sogar an der Entwicklung von Atemwegsallergien beteiligt sein6.

Professor Detlef Schuppan und Kollegen von der Universität Mainz konnten die negative Wirkung von ATIs auf den Darm und auch auf das Gehirn (Darm-Hirn-Achse) in einem Tiermodell für Multiple Sklerose (MS) nachweisen. Die Forscher verabreichten Mäusen eine Diät ohne Gluten aber mit ATIs, und zwar in einer Menge, die dem entspricht, was wir Menschen an einem Tag zu uns nehmen (natürlich unter Berücksichtigung des nicht unbeträchtlichen Unterschieds des Körpergewichts zwischen Mäusen und Menschen). Die Forscher verglichen ihre Ergebnisse dann mit Ergebnissen basierend auf unterschiedlichen Mengen an Gluten und ATIs in Kombination sowie mit einer komplett ATI-freien Diät. Dabei konnten sie ATIs als die wichtigste entzündungsfördernde Komponente dieser Diäten ausmachen.

Die ATIs lösten durch Aktivierung des angeborenen Immunsystems eine entzündliche Immunreaktion im Darm und im zentralen Nervensystem aus. Dies führte auch zu einem Anstieg der klinischen MS-Werte.

Die Forscher mussten nun nur noch die Übertragbarkeit dieser Ergebnisse auf den Menschen überprüfen. Dafür testeten sie die Wirkung von ATIs und Lipopolysaccharid (LPS: der Hauptzellwandbestandteil bestimmter Bakterien und Hauptaktivator der angeborenen Immunreaktion) auf die Aktivierung des angeborenen Immunsystems in weißen Blutzellen sowohl von gesunden Personen als auch von MS-Patienten. Interessanterweise konnten ATIs sowohl in den Zellen von Gesunden als auch in denen von MS-Patienten eine pro-inflammatorische Reaktion ähnlich der von LPS auslösen8. Diese Ergebnisse lassen vermuten, dass ATIs Autoimmunkrankheiten bei genetisch veranlagten Personen verschlimmern, wenn nicht sogar auslösen können.

Im Einklang mit dieser Hypothese stellte eine italienische Forschergruppe eine erhöhte Prävalenz von Autoimmunerkrankungen bei Patienten mit NCGS im Vergleich zu gesunden Personen fest. Die häufigste Autoimmunerkrankung unter NCGS-Patienten war dabei Autoimmunthyreoiditis (Hashimoto-Thyreoiditis)9.

Nahrungsmittel Amylase-Tripsin Inhibitoren(immunologische Bioaktivität) Gluten(adaptive immunologische Reaktion)
Weizen, Gerste, Kamut, Dinkel, Emmer hoch (100%) ja
Soja, Buchweizen, Hirse, Tef, Einkorn mittel (<20%) nein(mit Ausnahme von Einkorn)
Linsen, Quinoa, Hafer niedrig (<10%) nein(besonders Hafer nicht)
Amaranth, Reis, Mais, Kartoffeln sehr gering (<2%) nein

Tabelle 1: Amylase-Trypsin-Inhibitoren in unverarbeiteten Pflanzenarten. Aus: Smollich & Vogelreuter (2018), modifiziert nach Zevallos et al. 2017.

Unsere Darmbarriere – Hauptakteur für die Aktivierung des angeborenen Immunsystems?

Wie bei anderen funktionellen Darmerkrankungen wird auch bei der Entstehung von NCGS eine erhöhte Durchlässigkeit des Darms (Leaky Gut) vermutet4.

Wie so häufig stoßen wir hier auf das Henne-Ei-Problem: Eine bereits vorhandene Darmdysbiose schädigt auch die Darmbarriere. Bei einer geschädigten Darmbarriere können ATIs das Darmepithel leicht überwinden und das angeborene Immunsystem aktivieren, wie in der Studie von Prof. Schuppan und Kollegen gezeigt. Die am Anfang dieser Kaskade stehende Darmdysbiose könnte durch einen Mangel an Butyrat-produzierenden Bakterien und das Eindringen von Sauerstoff in das Darmlumen bedingt sein10. (Wusstest Du, dass Du durch die Einnahme von PHGG die Butyrat-Produktion Deiner Bakterien ankurbeln kannst? Mehr dazu hier.)

Umgekehrt gibt es auch Belege dafür, dass ATIs ohne eine bereits gestörte Darmbarriere Darmentzündungen auslösen können11.

Daher sind sowohl die Verringerung der Aufnahme von ATIs als auch die Unterstützung einer gesunden Darmbarriere logische Strategien zur Behandlung von NCGS und den damit verbundenen Symptomen.

“Moment mal – muss ich ganz auf Weizenbrot verzichten?”

Viele Forschungsergebnisse bestätigen die negativen Auswirkungen bestimmter Arten von ATIs auf unsere Gesundheit. Glücklicherweise deuten einige Untersuchungen darauf hin, dass ATI-Proteine zumindest teilweise durch Hitze abgebaut werden. Andererseits können hitzebedingte Veränderungen der Proteinstruktur von Lebensmitteln allergische Teile dieser Proteine freilegen und zu stärkeren Immunreaktionen führen1. Leider fehlt es derzeit noch an gesicherten wissenschaftlichen Erkenntnissen über die Auswirkungen von abgebauten ATIs auf unsere Gesundheit.

Was bedeutet das nun für Deine geliebte Scheibe Weizenbrot? Keine Sorge! Es gibt ein paar Dinge, die Du tun kannst, wenn Du unter NCGS leidest und nicht verzichten möchtest.

  • 1. Die richtige Weizenart

    Ältere Weizensorten, insbesondere Einkorn (Triticum monococcum), weisen nachweislich geringere ATI-Konzentrationen und/oder Bioaktivität auf als die meisten anderen Weizensorten11, 12. Zudem kann das gründliche Ausbacken des Brotes dazu beitragen, dass einige der verbleibenden ATIs in diesen speziellen Weizensorten abgebaut werden.

  • 2. Sauerteigbrot

    Eine weitere Möglichkeit, die Menge der ATIs und/oder ihre Bioaktivität zu verringern, ist die Fermentation, wie sie auch beim Sauerteig stattfindet. Untersuchungen haben gezeigt, dass bestimmte Milchsäurebakterien im Sauerteig Enzyme absondern, die ATIs abbauen13, 14. Außerdem werden die eiweißabbauenden Enzyme im Getreide selbst besser aktiviert, wenn der pH-Wert des Sauerteigs unter den Wert von 4 sinkt13, 15, 16. Dies verringert zusätzlich die Entzündungsaktivität von ATIs13.

  • 3. Probiotika

    Obwohl die Forschung bezüglich Probiotika noch in den Kinderschuhen steckt, hat eine erste Studie einige Stämme (Lactobacillus salivarius H32.1, Lactobacillus mucosae D5a1 und Lactobacillus rhamnosus LE3) aufgezeigt, die entzündlichen Wirkungen von ATIs verringern können17. Diese Ergebnisse müssen allerdings noch beim Menschen bestätigt werden. (Unser voriger Blogbeitrag Probiotika – nutzlos oder nützlich könnte Dich auch interessieren!)

Die Kehrseite des Sauerteigs: Polyole

Obwohl durch die Sauerteiggärung der Gehalt an den meisten FODMAPs, Weizenkeim-Agglutinin und ATIs stark reduziert werden kann, kann die Produktion des Zuckeralkohols Mannitol begünstigt werden18. Zusammen mit Sorbitol gehört Mannitol zur FODMAP-Gruppe der Polyole. Wenn Du nicht auf Mannitol, sondern auf andere FODMAPs reagierst, kannst Du höchstwahrscheinlich ohne große Probleme Sauerteigbrot in Deine Ernährung aufnehmen.

Zusammenfassung

Die Auswirkungen von ATIs auf den menschlichen Magen-Darm-Trakt sind noch nicht vollständig erforscht. Die verfügbare Literatur deutet jedoch auf einen negativen Einfluss auf die Integrität der Darmbarriere hin, wodurch Entzündungen des Darms und die damit verbundenen Symptome bei empfindlichen Personen ausgelöst werden. Eine glutenfreie Diät kann bei von NCGS betroffenen Personen zu einer Linderung der Symptome führen.

Es lohnt sich mit Sicherheit, eine glutenfreie Diät oder eine andere der in diesem Artikel genannten Strategien auszuprobieren, wenn bei Dir NCGS diagnostiziert wurde.


Referenzen (Englisch)
  1. Geisslitz S, Weegels P, Shewry P, Zevallos V, Masci S, Sorrells M, u. a. Wheat amylase/trypsin inhibitors (ATIs): occurrence, function and health aspects. Eur J Nutr. September 2022;61(6):2873–80.
  2. Mumolo MG, Rettura F, Melissari S, Costa F, Ricchiuti A, Ceccarelli L, u. a. Is Gluten the Only Culprit for Non-Celiac Gluten/Wheat Sensitivity? Nutrients. 10. Dezember 2020;12(12):3785.
  3. Catassi C, Elli L, Bonaz B, Bouma G, Carroccio A, Castillejo G, u. a. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts’ Criteria. Nutrients. 18. Juni 2015;7(6):4966–77.
  4. Cárdenas-Torres FI, Cabrera-Chávez F, Figueroa-Salcido OG, Ontiveros N. Non-Celiac Gluten Sensitivity: An Update. Med Kaunas Lith. 24. Mai 2021;57(6):526.
  5. Schuppan D, Zevallos V. Wheat Amylase Trypsin Inhibitors as Nutritional Activators of Innate Immunity. Dig Dis. 2015;33(2):260–3.
  6. Bellinghausen I, Weigmann B, Zevallos V, Maxeiner J, Reißig S, Waisman A, u. a. Wheat amylase-trypsin inhibitors exacerbate intestinal and airway allergic immune responses in humanized mice. J Allergy Clin Immunol. Januar 2019;143(1):201-212.e4.
  7. Yu T, Hu S, Min F, Li J, Shen Y, Yuan J, u. a. Wheat Amylase Trypsin Inhibitors Aggravate Intestinal Inflammation Associated with Celiac Disease Mediated by Gliadin in BALB/c Mice. Foods. 25. Mai 2022;11(11):1559.
  8. Zevallos VF, Yogev N, Hauptmann J, Nikolaev A, Pickert G, Heib V, u. a. Dietary wheat amylase trypsin inhibitors exacerbate CNS inflammation in experimental multiple sclerosis. Gut. 7. Dezember 2023;73(1):92–104.
  9. Carroccio A, D’Alcamo A, Cavataio F, Soresi M, Seidita A, Sciumè C, u. a. High Proportions of People With Nonceliac Wheat Sensitivity Have Autoimmune Disease or Antinuclear Antibodies. Gastroenterology. September 2015;149(3):596-603.e1.
  10. Leccioli V, Oliveri M, Romeo M, Berretta M, Rossi P. A New Proposal for the Pathogenic Mechanism of Non-Coeliac/Non-Allergic Gluten/Wheat Sensitivity: Piecing Together the Puzzle of Recent Scientific Evidence. Nutrients. 2. November 2017;9(11):1203.
  11. Zevallos VF, Raker V, Tenzer S, Jimenez-Calvente C, Ashfaq-Khan M, Rüssel N, u. a. Nutritional Wheat Amylase-Trypsin Inhibitors Promote Intestinal Inflammation via Activation of Myeloid Cells. Gastroenterology. April 2017;152(5):1100-1113.e12.
  12. Geisslitz S, Ludwig C, Scherf KA, Koehler P. Targeted LC–MS/MS Reveals Similar Contents of α-Amylase/Trypsin-Inhibitors as Putative Triggers of Nonceliac Gluten Sensitivity in All Wheat Species except Einkorn. J Agric Food Chem. 21. November 2018;66(46):12395–403.
  13. Huang X, Schuppan D, Rojas Tovar LE, Zevallos VF, Loponen J, Gänzle M. Sourdough Fermentation Degrades Wheat Alpha-Amylase/Trypsin Inhibitor (ATI) and Reduces Pro-Inflammatory Activity. Foods Basel Switz. 16. Juli 2020;9(7):943.
  14. Fraberger V, Ladurner M, Nemec A, Grunwald-Gruber C, Call LM, Hochegger R, u. a. Insights into the Potential of Sourdough-Related Lactic Acid Bacteria to Degrade Proteins in Wheat. Microorganisms. 30. Oktober 2020;8(11):1689.
  15. Gänzle MG, Loponen J, Gobbetti M. Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol. Oktober 2008;19(10):513–21.
  16. Rojas Tovar LE. Degradation of Wheat Germ Agglutinin and Amylase-Trypsin Inhibitors During Sourdough Fermentation. 2020 [zitiert 12. April 2024]; Verfügbar unter: https://era.library.ualberta.ca/items/d7a1a37f-273f-40bb-a3ef-ad88997bf272
  17. Caminero A, McCarville JL, Zevallos VF, Pigrau M, Yu XB, Jury J, u. a. Lactobacilli Degrade Wheat Amylase Trypsin Inhibitors to Reduce Intestinal Dysfunction Induced by Immunogenic Wheat Proteins. Gastroenterology. Juni 2019;156(8):2266–80.
  18. Boakye PG, Kougblenou I, Murai T, Okyere AY, Anderson J, Bajgain P, u. a. Impact of sourdough fermentation on FODMAPs and amylase-trypsin inhibitor levels in wheat dough. J Cereal Sci. November 2022;108:103574.

Weiterlesen

×
Unser Produktberater hilft dir, das richtige Produkt zu finden!
Zum Produktberater
Unsicher, welches Produkt?
×